Static black hole uniqueness theorems

Student: Virinchi Rallabhandi
Supervisor: James Lucietti

This report is submitted as a 1st year progress update
in the Doctor of Philosophy degree at the University of Edinburgh.

August 2023



Contents

(1__Introduction|

2 Foundational results

The beginning - Israel’s original proof

The end - the most comprehensive proof]

The attermath - contemporary research|

[>.1 Purely electric|. . . . . . . . .
[>.1.1  Background materialf . . . . . . ... ... oo

[>.1.3  Uniqueness proof] . . . . . . . . . .. ..
[>.2  With magnetic fields| . . . . . . .. ...

25

33

41
41
41
46
49
61
63
66

70

81

86

89



Chapter 1

Introduction

Perhaps the oldest uniqueness result in general relativity is the famous Birkhoff theorem, dis-
covered merely a few years after general relativity itself. Birkhoff’s theorem states that the
only spherically symmetric solution of the vacuum Einstein equation is the Schwarzschild so-
lution. All subsequent uniqueness theorems essentially follow the same format - assume some
symmetry and prove the symmetry to be so restrictive that Einstein’s equation has only one
solution.

Despite not being assumed a priori, the Schwarszschild solution possesses the property that it
is static. Naturally, one may wonder if a kind of converse to Birkhoff’s theorem is true. Does
every static, vacuum spacetime have to be spherically symmetric and thus Schwarzschild? If
not, what further assumptions are required? These issues are more interesting when studied in
the context of spacetimes containing black holes and this has been the main topic I've explored
in the first year of my PhD. In short, the task is to prove that the class of static, asymptotically
flat black hole spacetimes contains only the Schwarzschild spacetime, or its analogues like the
Reissner-Nordstrom spacetime when matter fields are involved.

More than forty years after Birkhoft’s theorem was established, the static black hole unique-
ness conjecture was resolved in the affirmative by Israel [I]. Although Israel’s proof made some
serious assumptions, most were relaxed soon afterwards [2, 3] and Israel’s work effectively gave
birth to a new industry of black hole uniqueness research - see [4] for a review. Given it all
began with Israel, I spent some time studying Israel’s proof and I've re-presented his proof in
full in chapter [3] Probably the simplest and most comprehensive of the early proofs was by
Robinson [3,4]. Although I studied this proof, I have not included it in this report. Like Israel’s
proof and the others around in the 1960s and 1970s, the proof was built on constructing some
seemingly ad hoc divergence, observing the result to be a sum of squares, integrating using
Stokes’ theorem and then using the vanishing integrand to detect spherical symmetry. Despite
the successes of the early proofs - including their generalisations to accommodate source-free
electromagnetic fields [4] - three main difficulties remained when it came to generalisations.

1. Dealing with disconnected horizons.
2. Integrating the Ricci scalar of a ‘constant time’ slice of the event horizon.

3. Constraining the Riemann tensor of spacelike hypersurfaces given only the Ricci tensor
of those surfaces.

The 2nd and 3rd problems are only issues when one attempts the static uniqueness problem in



higher dimensiond!] where as the 1st problem arises in all dimensions. All three problems were
simultaneously solved by Bunting and Masood-ul-Alam [5] through an ingenious proof utilising
the positive energy theorem. Their method has been adapted and generalised to several other
scenarios such as higher dimensions and various matter fields - e.g. see [0l [7, 8, @, 10} [IT]. Note
this is not a purely technical exercise. For example, for spacetimes that are merely stationary,
but not static, the existence of black rings means uniqueness doesn’t hold in higher dimensions
[12]. Given the Bunting and Masood-ul-Alam method is the most comprehensive and I gave
a talk on it earlier this year, it would have been remiss of me not to include it in this report.
Chapter 4| is dedicated to the higher dimensional version of Bunting and Masood-ul-Alam’s
proof. As far as I know, this positive energy theorem approach explained in chapter 4| forms
the basis for all static black hole uniqueness theorems not assuming connected event horizons
or set in dimensions higher than four. While very elegant, these proofs are in some sense a
little unsatisfying, because the difficulties of overcoming the aforementioned problems have
been outsourced to the difficulties of proving the positive energy theorem.

I tried for some time in this past year to take up the problem of proving static black hole
uniqueness without recourse to the positive energy theorem. I focused on one particular paper
by Agostiniani and Mazzieri [13] for several months. In [I3|[14], the authors found a new way of
detecting spherical symmetry by conformally scaling the problem to an asymptotically cylindri-
cal one. Their paper manages to circumvent the third problem listed above and provides a new
proof of static, vacuum, asymptotically flat, connected black hole uniqueness in 4 dimensions.
For higher dimensions, they are forced to deal with the second problem by assuming a particu-
lar inequality between the constants parameterising the solution and the Ricci scalar’s integral.

I have extended the work of [I3] by adding a source-free Maxwell field. Following [13], I
have succeeded in finding a new proof of Reissner-Nordstrom’s uniqueness among 4D, static,
asymptotically flat, connected black holes in the Einstein-Maxwell system. In higher dimen-
sions, I had less success. Initially, I considered a Maxwell field with purely electric components.
In this case, by judicially choosing the variables in which the problem is expressed, I have a
complete proof given the same inequality that’s already assumed in [I3]. In the course of
this analysis, I managed to find the electric field fully in terms of the lapse function - as far
as I know this has not been done before in higher dimensions without relying on the posi-
tive energy theorem. When magnetic components are included in higher dimensions, I had
to rely on an additional, auxiliary inequality between the constants parameterising the prob-
lem. In some sense this is not surprising - after all [13] already required one such inequality
in higher dimensions. The full drama of my endeavours on this topic is the subject of chapter [f]

I started the academic year though - as every PhD student does - with background read-
ing. And that’s exactly where I’ll start the main body of this report, in chapter

How to read this report

This report is written with the philosophy that as far as practical, the reader should never have
to put ‘pen to paper’ to verify any equation or claim I make. As such, the report is quite long.
However, I've tried to write in a format such that a reader who skips all the proofs should still
be able to follow the story I'm trying to tell. The report is deliberately written in a somewhat
casual style. I never enjoyed reading terse, austere papers that made me want to gouge my eyes
out a la Oedipus Rex and so I tried to avoid that style myself. Only chapter [5| contains any
new results and the absence of detailed citations should not be taken as a claim to originality.

'In 4 dimensions, a constant time slice of the event horizon is 2D, allowing one to use the Gauss-Bonnet
theorem and spacelike hypersurfaces are 3D, meaning the Riemann tensor is determined by the Ricci tensor.



However, many known results do not have satisfyingly detailed proofs or properly quantified
assumptions stated in the literature. I have sought to fill in such gaps whenever I could and in
many ways it is a more natural reflection of the real experience of the first year in a PhD. On
the whole, I intend this report to a non-exhaustive tour of my work for the past year. Finally,
I would also advise readers to read appendix |D| as required.



Chapter 2

Foundational results

I once spent two weeks being inculcated with the philosophy that it pays handsomely to “think
deeply about simple things.” That idea is perhaps the motto underlying this chapter. Here, I
collate many well known results about static spacetimes in a pedagogical style. These results
are almost exclusively taken as assumed knowledge in academic papers and in the later chapters
of this report. While much of the content is based off a book I spent many months studying,
Black Hole Uniqueness Theorems by Markus Heusler [15], I believe it helps to unify results that
are scattered across various books and various chapters of each book. Furthermore, there are
several results - like the no ergoregion theorem and the 4D spherical horizon topology theorem
- which are well known, say from Hawking and Ellis’ seminal monograph [16], but don’t possess
satisfyingly detailed written proofs in the literature. Even for content available in textbooks
like [15], I believe I have filled in many missing steps.

%k %k ok k ok ok k ok

Harvey Reall once told us in a lecture that one of the ironies of general relativity is that it’s
counterintuitive and yet makes perfect sense. An example of this in action is that one of the
central ideas of general relativity is to be coordinate independent, and yet one rarely makes
any progress in practice without choosing the right coordinate system first. Indeed, such is life
in analysing static spacetimes. I’ll start by constructing a coordinate system in the domain
of outer communication, C, that is well adapted to the static geometry. To be clear, I'll be
adopting the following definition of static.

Definition 2.1 (Static). A spacetime, (M, g), which is asymptotically flat at null infinity is
called static if and only if it possesses a Killing vector field, k*, such that k® is timelike near
I* and k* is hypersurface orthogonal.

Note that the definition relies on having some asymptotics. I will always consider asymptoti-
cally flat spacetimes, so it suffices for me to take this somewhat strict definition.

For any Killing vector field, it’s a standard result that one can define local coordinates such
that the Killing vector field is a coordinate vector field and the metric’s components are inde-
pendent of that coordinate - e.g. see sections C.2 and C.3 of [17]. In the case of k%, the Killing
vector field making (M, g) static, let ¢ be the corresponding local coordinate, i.e. k% = 0/0t.
In analysing static uniqueness, most people tacitly assume there is no ergoregion. This is in
fact well known to be true for static spacetimes, but I have yet to find a proof in the literature
that goes into sufficiently satisfying or convincing detail. Hence, I have written my own based
on the results in [16] and [I§].

Theorem 2.2 (Carter and Hawking & Ellis). Let (M, g) be an asymptotically flat, static,
spacetime. Let k® denote the Killing vector field making (M, g) static. Assume V,(k%ky) # 0
whenever k%, = 0. Then, (M, g) has no ergoregion.

bt



Proof. Assume the ergoregion is non-empty, for a contradiction.

Let V = —k%, and let Z = {p € M|V =0 at p}.

. Z is a closed set, since any convergent sequence of points in Z has V = 0 at each point and
thus V = 0 at the limit point from k“k,’s continuity.

k¢ is static = k“ is hypersurface orthogonal = k A dk = 0, where I'll also use k to denote
k, when it’s self-evident that the expression only makes sense if £ is a 1-form.

0=k Adk. (2.1)

5.0 =k, Vyke + kyVioky + k. V ok (2.2)

= k., Vpk. — &tV k. + .V kp by the Killing equation. (2.3)

Sk VYV — VLV = =k Vi (Kke) + Ky Vo (Kke) (2.4)
= —2k°(koVipke — kpyV o ke) (2.5)

= 2k°k.V ky by equation (2.6)

= —2VV.k, (2.7)

By the hypersurface orthogonality condition, 3 a function, f, such that k, = —adf. Let Cj be
a constant f hypersurface.

Let p € Z. Let y(\) be a curve in Cy passing through off] and let 7 be y(\)’s tangent vector.
Assume I can choose y(A) such that dV/dA # 0 in an open neighbourhood of p within v(\)
(i.e. an interval), for a contradiction.

L, dv 1
Wk T 2Vk 1°V,V (2.8)
1
= WTb(ka“V —2V'V*°k,) by equation (2.9)
1
= —T'kVV — TV, 2.1
Ve VIV Ve, (2.10)
T® is tangent to a curve in Cy and k, is normal to Cy by k, = —adf and Cj being a constant
f surface.
. T’k = 0. Then, upon applying the Killing equation I get
1 adV o b a
Wk T TV k*. (2.11)

Since I assumed dV/dA # 0 in an open interval around p, I can use V' itself as the parameter,
A. This is essentially the inverse function theorem.

" %k“ = T*Vk®. The RHS is continuous, but the LHS diverges at p since V = 0 at p. 4
This contradiction means dV/dA = 0 around p for every curve in Cy.

However, if V' were zero in an open neighbourhood of p, p’s arbitrariness in Z would mean Z
was an open set.

But, Z is also closed, so M’s connectedness would make Z = M, contradicting V = —k%, > 0
near Z=.

..V cannot remain zero along directions perpendicular to Cy.

.. The connected component of Z including p is a connected component of Cy, say Fj.

.. Ey is a connected null hypersurface (since & is null on Ey and perpendicular to Ep).

dV # 0 when V=0 = V > 0 on one side of Ey and V' < 0 on the other side.

Since the ergoregion is assumed to be non-empty, I can choose p to be outside the event horizon.
.. The V < 0 side is in the ergoregion’s interior.

LCy is fixed by the value of f at p.



Choose a point, g, just off p in the ergoregion’s interior.

Since ¢ is not inside the black hole, ¢ € J~(ZT).

If ¢ ¢ J7(Z7), then by definition, ¢ would be inside a white hole region. It’s strange to define
the ergoregion to include white holes and white holes are unphysical anyway, so either way, I
can assume g € J*(Z7).

.. 3 a future directed causal curve, say s(A), from Z~ to Z* passing through g.

Ey being a connected null hypersurface means the outgoing normal to Ej is everywhere future
directed or everywhere past directed (it can’t stay null and flip from one light cone to the other
without passing through zero).

*. $(A) can only be future directed while going into the V' < 0 region considered here, or only
while leaving it, but not both. 7.

This contradicts s(\) being future directed all the way from Z~ to ZT.

.. The ergoregion must have been empty. U

Corollary 2.2.1. In a static spacetime with V,(kk,) # 0 whenever k%, = 0, the event
horizon of a black hole must be a Killing horizon of k*.

Proof. The event horizon is a causal boundary. As such, it must be a null hypersurface, because
all the light cones are tangent to a causal boundary.

Next, let ®' denote flows along k°.

k® is Killing <= (®')*g = g.

.. Causal structure is unaffected by flows along k®.

.. Since the event horizon is a causal boundary, it too must be unaffected by flows along k®.
.. k% is tangent to the event horizon.

.. k% is null or spacelike, since the event horizon is a null hypersurfaceﬂ.

The theorem says that in the case considered here, k% is timelike just outside the event horizon.
Thus, by continuity, £* can only become null, not spacelike, on the event horizon, thereby
making the event horizon a Killing horizon of k¢. U

Definition 2.3 (Adapted coordinate system). For a static spacetime, the metric in the domain
of outer communication, C, will be written as

g=—-S*dt®dt+h, (2.12)

where h is a metric on the surfaces of constant t (i.e. it only depends on the other n — 1
coordinate 1-forms, dz*), S > 0 and neither S nor h depends on t.

Proof. Theorem implies g(k, k) < 0 in C, justifying the coefficient of dt @ dt being —S2.
Neither S nor h depending on ¢ follows from k% = 9/0t being Killing.

k® is static = it is hypersurface orthogonal. Let 3 denote the relevant hypersurfaces.

The coordinate, ¢, is constructed by flowing along k% from X and letting (¢,z") be the co-
ordinates of the point reached by flowing a parameter distance, ¢, from a point with local
coordinates, z%, in X.

.. 2 are constant t surfaces and thus k, oc dt.

. goi = 0 and I get the metric in equation [2.12] O

It will help to decompose the Ricci tensor in an analogous way to the metric.

Theorem 2.4. R; = SOWS and R;; = Rg-l) — §v§")v§h)s, where subscript (h)s denote
quantities with respect to the metric on each .

2The argument so far actually applies to any Killing vector in any black hole spacetime.



Proof. Let {0“}2;(1) be an orthonormal basis of 1-forms, with with §° = Sd¢. Then, the structure
equations imply the following.

Aot = —wh, A 0¥ = df° = d(Sdt) = —w’, A" & SV, (S)dat A0 = -, AO*

Vo(S) = 8,(S) = 0, 0% = 0 by w, = —w,, and V;(S) = V7 M1 () = 9,(S).

Hence, the d§° condition reduces to

—_

—O NG = §v§h)(5) dz’ A 6° (2.13)
= %vghm(S) 6" A 6° (2.14)
) 1 )
= W A = §vghﬁ)(S) 0° A0 (2.15)

where Vgh’e) denotes the connection components with respect to the tetrad, {6 ?;11, on constant

t hypersurfaces, (X, h).
RALES %Vgh’e)(S)Go + f6" for some function, f.
The other three tetrad exterior derivatives say

Ao’ = —w', A 0" (2.16)
=—wy A — wij A (2.17)

1 , o
_ _gvghﬁ)(swo AN — [T NE° — W A6 (2.18)
=—fO'NO —w' NG (2.19)

Since everything is ¢ independent and there are no t — 2% cross terms in the metric, df* cannot
have a 0° factor.
S f=0and df" = —w'; A O
The latter equation is the same as the structure equation on (3, h).
'ij _ w(h)lj.

, %RWMGP N7 = dwyy + wyy A WP,

.. By the uniqueness of structure equation solutions, w
Next, I apply the other structure equation

A’ = d (%vghv“(sw()) (2.20)
1 1
- d(gvg"ﬁ)(so A6+ §vg’“”(S)deO (2.21)
1 1 |
= d(gvg’“")(S)) AG° — §v§"’9)(5)v§h"’)(5)eo N (2.22)

gvghﬁ)(s ) is just a scalar as far the 1st term’s exterior derivative is concerned.
However, from the definition of the covariant derivative, if {e, Z;(l) is the inverse tetrad in the
tangent spaces, then

1 1 1
v (gvﬁ’“")5> = ej’“ak(gvgh’”s) — (@)5 Vi (S). (2.23)
1 ~ 1 1
R v <§v§’“9>5) 07 = (dz*)0, (gvghﬁ)s) - w’figv;’“‘”(S) (2.24)
1 1 ,
=a(gs) - gV, (2.25)



Using this in equation I get

dw?, = V9 (%vgh"”s) N ARt lvg.hﬁ)(S)wji A ivghﬂ)(swg.hﬂ)(swo AGT (2.26)

i j g G2
1 ) 1 .
_ gvghﬁ)vg’“@)(sw NGO+ Evgwsm NGO, (2.27)
Inserting this into the structure equation, I get
L0 v 0 0
QR a0 N0 = dw’; + Wt AW (2.28)
1 . 1 . .
= §V§h’9)vgh’0)(5)9] NG+ gvgh’a)(S)uﬂi N+’ Aw’; as we =0 (2.29)
1 . 1 . 1 .
_ gvghﬂ)vghﬂ)(sw AO° + gvg.hﬁ)(S)wﬂi NGO+ Evg’%‘”(swo Awl (2.30)
1 )
— §v§h"’)v§h’9>(5)9] N (2.31)

. I can read off that Ry = 1V (h0)x7 he)(S) and Ro;jx = 0 (these two determine other
(anti)symmetry related index permutatlons t00).
The remaining Riemann tensor components follow from

§R 0 A0 =dw' W, AW (2.32)
= dw(h)ij +w'y Aw’; + Wiy A wkj (2.33)
i1 1 i
=dw™ + Evgh»9>(s>9° A §Vy”e)(s)eo + ™ AWt (2.34)
= dw™ + W™ AW (2.35)

The RHS is the same as the corresponding structure equation on (3, h).

". By the uniqueness of the solutions to the structure equations, it follows that R, = Rfjh,zl
These expressions were in the tetrad indices. I can go back to the {¢,z'} indices as follows.

t is completely decoupled from the z* in g,,, and likewise 6° from 6".

". Only Ry,o; and R;jp being non-zero in the tetrad basis will imply that only Roio; and R;jx
will be non-zero in the {¢, z'} basis too.

R = (0)0(6"):(6)0(07); Riscpee (2.36)
— (6°)0(6"),(6°)0(6"),; R\ by the decoupling (2.37)
1
= 5(6%),5(6"); Sv v 9(s) (2.38)
= sV, (2.39)

For the other index combination, R;;i = RM

ijk
basis components.
From hereon, I no longer need the tetrad.
-, All quantities, unless otherwise stated, are in the {¢, '} coordinate basis.
Finally, I can compute the Ricci tensor components,

, is automatically inherited by the coordinate

Rop = QWRMOVO ( )
= hvS Vgh) Vgh)S noting the relevant non — zero components (2.41)

= SO g, (2.42)

Ry = gMVRMUI/i =0 and ( )
(2.44)

1 1
<5 Rowj + W' Ry = —= V"V VS + RV

Rij = g"" Ryiwj = g

S i



which are the expressions claimed in the theorem. O

Corollary 2.4.1. The Ricci scalar is R = R — %D(h)S.

Proof. R = g" Ry = — &S00S + 1 (R} - 1v"vVs) = R0 — 20005, 0

Corollary 2.4.2. The components of the Finstein tensor are Gy = %S2R(h)) Gy = 0 and
Gy = G+ L(hyOMs — vV M),

tj
Although theorem [2.4 was proven using tetrads, the Christoffel symbols for adapted coordinates
will also be needed briefly later.

Lemma 2.5. The Christoffel symbols for adapted coordinates are

1

I, =0,T% =
00 ’ 07 S

VS, IO, =0, Iy = SVWIS, I, =0 and '), =T . (2.45)

Proof. The proof is straightforward by direct evaluation.

) 1 .
Fz,uu - §glp(a,ugl/p + augp,u - apg,uu) (246)
1 ..
= 51" (0ugvi + g — OG- (2.47)

2T = 0by 99 = 0 & go, = 0, Tgg = —1h10;(~5?) = SVMiS and I =T .

)

e, = %go"(ﬁugw + OuGpp — OpGyw) (2.48)

= —%%(8#9,,0 + 0y 90y — OoGyuw) (2.49)

= —2%2(8“%0 + Ougop + 0) (2.50)

D00 =0, I, = —550,(—5?) = 1v"S and IV, = 0. O

Thus far, I have analysed some implications of the spacetime being static. However, I am also
assuming asymptotic flatness and this too imposes some very strict constraints on (M, g). T'll
be formulating the static uniqueness problems as systems of partial differential equations on ¥,
in the domain of outer communication. Thus, >; has two boundaries, namely its intersection
with the event horizon, H", and the boundary at infinity.

Let H = H" NY; denote the inner boundary.

For the boundary at infinity, the construction of (M, g) as an asymptotically flat manifold (at
least locally) foliated by constant ¢ surfaces makes ¥, an asymptotically flat end (for each t).
.. The boundary at infinity is a sphere, S” 2, because an asymptotically flat end is diffeomorphic
to R™ with a compact set removed and has metric & extrinsic curvature,

hij = (52'3' + O(l/T’n_?)) (251)
K =0(1/r"?), (2.52)

where r = \/z;x; and x; are “almost Cartesian” coordinates arising from the diffeomorphism.
The asymptotics at S™ 2 contain a lot of physically important information.

10



Definition 2.6 (Mass and charge). The ADM mas{ is defined to be

1

= E S&_Q nz(ajh” - 8Zhjj)dA (253)

When the matter fields include a Mazwell field, F', the electric charge is defined to be

1
= — F. 2.54
Q=g [ (254

Note that fSn72 should be interpreted as lim,_, fsnfg and one has to use the almost Cartesian
coordinates from the asymptotically flat end. With the benefit of hindsight, I will also define
the quantities

47 Q)
= —+—— and 2.55
= e, ™ (2.55)

(n—2)wp_2’
where wy,_o is the area of a unit radius S™ 2.

I will assume the following asymptotic expansions, which are standard in the literature - e.g.
compare with [T11, 8, 15l 13}, @, [10].

Definition 2.7 (Asymptotics). To leading order near S%2,

S=1- 25‘_3 and (2.57)
m

It has to actually be proven there exist coordinates near S” 2 such that these asymptotics are
valid. Unfortunately, I never got around to studying these proofs, so I'll have to defer to [19]
and applicable results in subsequent work, e.g. [5, 20]. An interesting fact to note though is
that [19, B, 20] all assume the vacuum Einstein equations in their proof of equations and
[2.58 T haven’t yet found an explicit generalisation to the Einstein-Maxwell system, which will
be studied in chapter [5]

Observe that dS # 0 near S 2 by equation 2.57 When this happens, the coordinate sys-

tem can be further refined. Indeed in chapter [3| it will be assumed this is always possible.

Definition 2.8 (Israel coordinates). When dS # 0, one can use the Israel coordinateaﬂ These
use S itself as a coordinate, since dS # 0. The full coordinate system is {t, S, z*} where A runs
from 2 ton—1 and the x* are coordinates on constant t and S surfaces. In Israel coordinates,
the metric is

g=—5%dt @ dt + p*dS @ dS + hpda? ® dz®P. (2.59)

3Perhaps this is more aptly called ADM energy, but it doesn’t really matter for static spacetimes.
4T have given them this name because of their successful use by Israel in [I], which I'll discuss in chapter

11



Proof. 1t’s worth saying a bit more about why the metric can be written in this form.

Let {z4}%_} be local coordinates on a particular constant S surface.

.. dS is normal to that hypersurface.

Extend 2 off that hypersurface by keeping z# constant along flows of (d.S)®.

That way only S changes along flows of (d.S), meaning (dS)*  (9/9S5).

.. There are no dS-dz# cross terms in the metric. Then, I just define p? (p > 0 without loss of
generality) to be whatever the coefficient of dS ® d.S is in the metricﬂ I know that coefficient
must be positive because YJ; is Riemannian. Il

I've already mentioned dS # 0 near S% 2. It is also true in another region.

Lemma 2.9. dS # 0 just outside the event horizon of a non-extremal black hole in a spacetime
satisfying the conditions of theorem[2.3.

Proof. By continuity, the value of d(k®k,) on the event horizon equals the limit of d(k®k,)
while approaching the event horizon from any path. Outside the event horizon, I can evaluate
d(kk,) in the adapted coordinates.

o d(k%,) = limd(—5?%) = —21im(5dS).

Corollary means S tends to zero as one approaches the event horizon.

.. Since (d(kkp))e = —2kk, # 0 on the event horizon of a non-extremal black hole, dS must
diverge for d(k%k,) = —21im(SdS) to hold.

.. dS must be non-zero just outside the event horizon. U

Note that I'm effectively always dealing with non-extremal black holes because of the assump-
tions that I made for theorem To deduce some significant results about the event horizon
using Israel coordinates, I'll first need a few auxiliary lemmas.

Lemma 2.10. In Israel coordinates, the Christoffel symbols are

1 1 1
F(h)sss = ;asp, F(h)SSA = ;8Ap, F(h)SAB = _;KABa

h)A 7 h)A h)A h)A

where Kj is the extrinsic curvature tensor for constant S surfaces.

Proof. dS is normal to constant S surfaces. From equation (dS)"(dS); = .

. . . . a_ 108
. A unit normal is n, = pdS <= n® = 595"

.. The induced metric, h, is h;j = hjj — nin; = h;; — pzéildjl. Then, the extrinsic curvature is

K = %(cni})ij (2.61)
_ %(nkakﬁij + g0 + hady®) (2.62)
_ %(%#lak(hij — 0260651) + (hay — PP5k1671)0, (%W)
+ (hix — p*0:1611)0; <%5k1> ) (2.63)
s Kap = %asim since ha; = 0 by equation [2.59, (2.64)

5Note that all the metric components can depend on S, unlike the similar rigmarole with ¢ in equation 2.12]
where k% being static meant all the metric components were ¢ independent.

12



The Christoffel symbols can be found using the FEuler-Lagrange equations of

1 dm'da:j
1 ,dSdS 1. daAdaP
2 aa + §hABHﬁ. (2.66)
For S, 1 have
0L ASASop 1y G A 05050 e At
85~ Paxaros SWABI I Ay ~ Pax ax oS ABTAN dX
(2.67)
d [ ocC d [ ,dS ,d28 dp dS dzA\ dS
— == == o0 | L2 -2, 2.
a (a(g)) ) ( d)\) et (as o +0ale) dA) ) (2:68)
d2S  10ddSdS = 20A(p)dz?dS 1 dz? daP
— i IR p—— 2.
0= d)\2+p85d)\d)\+ o A dhv p Pan da (2.69)
Hence F( ) takes the values claimed in the lemma. Next, I‘(h)A i
oL dsds op 1. -  dzPda”®
2= 222 9 (hpe)—— ——. 2.
907~ P ae T a0 hme) (2.70)

()40

o ) S5 ) e
= has djif 20K as ji ;A +00 (hap) dfj de (273)
0= o e (o) 5 5
i) 2255)
_ djfj + 2pKAB%g %hAD (0shen +Bchs — dphsc) %%
L e
- d;fj +2p AB%g + P(E)ABC%% — ph*BaR(p )ji ji. (2.76)
F(h)Aij take the values claimed. O
Corollary 2.10.1. The Ricci tensor components are
RM = —p(@Wp+ 95K + pKapk“E), RV = p(VWKE, — 9,K), and
Ry = R - %V(j)Vg)P — KKyp — %ﬁAcﬁsKC& (2.77)

where K = W9 K;; = WP K 4.
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Proof. From the Christoffel symbols I calculated,

R(h)ijkl - akr(h)ijl _ all“(h)ijk + F(h)imkr(h)mjl _ F(h)imlr(h)mjk' 278)
S Ry =RYN =g rWr . — g™ p®E pm _pk pom (2.79)

h h)k h)k h)k h)m h)k hYm
R = g rMF gk pm o pWE - plm (2.80)

1 ~ 1 1
= 85 (;(%p) + (9A (—phABaBp) - 8,5‘ <—(95p> - ﬁs(pK) + ?as(p)ﬁg(p) + Kasp

. 1 -
— WB0,4(p)dp(p) — pr M4, BP0 — p—as( p)0s(p) + h*P04(p)ds(p)

+ h*B04(p)OB(p) — PP K45 K2, (2.81)
= 0 )00l) = 0N22000) = 05K — Ko+ Ky

— pr® hBCé’ oo+ h*P04(p)0s(p) — P K 5 K2 (2.82)
= —p0a(R*PVE p) — posK — pI'"™ L WPV p — PR ap KAP (2.83)
= —pda (V' ) pOsK — pr ™AL WPy — 2y p KA (2.84)
= —p0Wp — posK — P K g K45, (2.85)
R.(S'f;) = akF(h)kSA - aAF(h)kSk + F(h)kmkr(h)mSA - F(h)kmAF(h)mSk (286)
1 1 1
= Os (;@m) +0p (PK4) — 0a <;8sp> — 0a(pK) + ;@s(p)@x(/)) + K0ap
; 1

+ K2,0pp + pK P, T 5 — 504(0)05(p) = K4 0p + 1D

—pK B T (2.87)

1 1 1 1
= —Eas(P)aA(P) + ;asaAP + pOpK”, + ;aA(P)as(P) - ;@xasp — KOap — poa K

+ Kdap+ pKB, 7MW — pkB,TMC (2.88)
= pOpK?, + pKP,T™WC — pKB,TMC  — pa, K (2.89)
= VI EE, — o)V K, (2.90)
h)k h)k h)k h)m h)k h)m
RAB - &J’( ) AB T aBF( ) Ak T F( : mkF( : AB — F( ) mBF( ) Ak (2-91)
1 ; 1 ; 1
= s (—;KAB) + 0T, L — 0y (;aAp) — 9T, — F@g(p)KAB — KK ap

1 ; ; ; 1
200 4+ T 5T 0 = 55 08(p)0alp) + Ky Kaac + KonK,
N (2.92)
; 1 1 1
=R\~ _8SKAB + 35( VK ap — ;aBaAP + ?33(/))@1([3) - ?aS(p)KAB — KKap
1
+ ;ac(mr e - ;aB(p)aA(p) + 2K 40 KC, (2.93)

1 1y
= R — ~0skap - ;vﬁ{"vg)p — KKap+2KAcKC,. (2.94)
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This can be re-written in the form stated in the lemma as follows.

1- 1- }
;hAC(‘)SKCB = hacds (hCDKDB> (2.95)
1. - 1- -
= —hAchCDaSKDB + —hAcKDBashCD (296)
p p
1 1- N
= ;aSKAB + ;hACKDBE)ShCD. (2.97)

The second term can b~e re:written iq terms of the~extrin~sic curvature becaL}se .
0 = 95 (3) = s (F*hen) = Ashop + hopdsh® = 20K + hepdsh*® implies

0= EBD2pKAB + ﬁBDBCBasﬁAC — 8571AB = —2,OKAB.

1- 1 1-
;hACaSKCB = ;asKAB + ;hACKDB(—QpKCD) (298)
1
= ;&gKAB - 2pKAcKCB. (299)
Hence, I finally get R} = R{} — 290V o — KKap — LhacOsKCy. 0

Corollary 2.10.2. The Ricci scalar is RMW = RN _ 2 _ K,z KAB — 2D(;L)p — %OSK.

p

Proof. R = p¥ Rg-l) = ,%R(s}g + hAB RX%. Then, using the components I just calculated,

1 ~
RM — _;p(D(h)p + 0sK + pK g K4P)

+ pAB <R§f; - %v@vg)p — KKap— %EACGSKCB> (2.100)

= —%D(mp - %85[( — KapK*B + R® — %D% ~K?— %65[( (2.101)

= —%D@)p - %aSK — KapK*P + R® — K2 (2.102)

which is the expression claimed. Il

Corollary 2.10.3. The components of the Finstein tensor are

1 _ -
Gy = P (F R+ K2 = KapKAP), Ggr = p(Vy KP, — 04K) and

~ 1~
G0 =GV — KKap + 5hAB(K2 + KaopKAP)

1 - . ~ . 5
+ ;(hABD(h)p + hapOsK — V(:)Vgl)p - hAcﬁchB). (2103)

Proof. Follows directly from GZ(-?) = Rg-l) — 1R™h,; and the earlier corollaries. O
Lemma 2.11. Under the conditions of theorem[2.9, the surface gravity, r, is positive.

Proof. The conditions of theorem imply x # 0. Assume x < 0 for a contradiction.

In corollary I have already shown the event horizon, H™, is a Killing horizon of k°.

Let V' be tangent to a future directed timelike curve passing through H* such that V' is not
parallel to k% (at any point where the curve hits HT).
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k® is chosen to be future directed at null infinity without loss of generality.

.. k* remains future directed all through the domain of outer communication because theorem
2.2] says it’s timelike throughout that region and k* can’t flip from one light cone to the other
while remaining timelike.

. k% is null and non-zero on the H* = k“ is still future directed on H™.

S Vek, <.

Then, VoV, (kky) = —2kV %, on HY = sgn(VeV,(k%k;)) = sgn(x) = —.

Timelike curves fall into the black hole, so sgn(V*V,(k°k;)) = — and k%k, = 0 on H™" together
imply k%k, < 0 inside the black hole.

But, theorem says k®kq, < 0 outside the black hole too.

o Va(kPky) =0 on H. 4

This is a contradiction because V,(k°k;) = 0 on H* implies k = 0, contradicting the x < 0
assumption. ]

Lemma 2.12. As one approaches the event horizon, p — %, where k is the surface gravity.

Proof. 1t follows pretty much from the definition of the Hodge star that for a p-form, o, and a
vector field or one-form, X (i.e. X% or X,), (A X) = 1x *x .

Let w =1« (kA dk).

Sox(kAw) = =% (WAk) = =i *w = —3(—1)"u,(k A dE).

Let N = k%k,. Then, using the Killing equation liberally,

2(=1)"x (k Aw)+kANdAN

= —u(k Adk) + k AdAN (2.104)
—k(k A dk)eap + (B AV (EK))ap (2.105)
= —k(ke(dE)ap + ko (dK)pe + Ko (dE) ) + 2k kVipke — 2kpkV oke (2.106)
= —N(dk)ap — kak®(dk)ee — Kok (dk)ca + kak®(dk)pe — kpk(dK)ac (2.107)
= —N(dk)a (2.108)
= —2NV k. (2.109)

For a static vector field, k A dk is zero thoughﬁ.
SANPVYEN Vo (k) = (B AAN) (kA AN ) gp (2.110)
= (K*VP(N) — K°V(N)) (ko Vs(N) — k Vo (N)) (2.111)
= 2NV*(N)V4(N) = 2(k*V,(N))? (2.112)
= 2NVY(N)V4(N) — 2(2k°k"V o (k) )? (2.113)
= 2NV4(N)V4(N) — 0 (2.114)
2NV (K")V (k) = V(N)V,4(N) (2.115)
—28*V(k")V 4 (k) = V(—=S*)V,(—S?) using adapted coordinates (2.116)
VU E") Vo (k) = —2V(S)V4(S) (2.117)
_ 2 using Israel coordinates. (2.118)

02

6This is true on a Killing horizon of k£ regardless of further assumptions.
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Next, observe that

(dk|dk) * k = 1e(dk|dk) (2.119)

= 1 (dk A xdk) (2.120)

= 1p(dk) A xdk + dk A 1 (xdE) (2.121)

= 1,(dk) A xdk +2dk A w (2.122)

= 1x(dk) Axdk by kAdk =0 (2.123)

= —dN A xdk. (2.124)

On the event horizon, dN = —2kk by the definition of surface gravity. So, on the event horizon,
(dk|dk) * k = 2kk A xdk. Next, observe that

(x(k A %dk))s = ﬁeb(/ﬂ A sk beren—2 (2.125)

( 12) Ebey oy rak €TV Lo (2.126)

—2(—=1)"20%, 07 KOV ey (2.127)

—2(— 1)%"ka (2.128)

—2(—1)"kk,. (2.129)

Sk Axdk = =2k %k (2.130)

Substituting this back up, I get (dk|dk) x k = —4r?> x k <= (dk|dk) = —4Kx? <+

2V (kb V,(ky) = —4k?. Substituting this back into equation says p> = 5. I can

take the positive square root by lemma [2.11], thereby completing the proof. i

The main upshot of these last three lemmas is the following theorem.

Theorem 2.13. Near the event horizon a static black hole,

52, s (0s)” + G4 (V) + S

Proof. From the proof of theorem [2.4] the only non-zero components of Ry, in this coordinate

Rabcd Rabcd

KapK*P + RU) RMUH . (2.131)

system are Ryjo; = S VZ(-h V;h)S , Riji = Rg-llzl and components related by the Riemann tensor’s
symmetries.

RabcdRade = 4R0i0jR0in + RijklRijkl (2.132)
1 g

= 45vIv(9) 5 VPVI(S) + R Rk (2.133)

= §v<h v (s)vMiv®i(S) 4 RE) RO, (2.134)

In Israel coordinates,
vIvS = 9,9;8 —TM* g5 =0 1™ (2.135)
Then, by lemma [2.10},
Vgh)v(h)(s)v(h)iv(h)j<s)

= (R"2@MT )2 4 2ptpABL Wt WL pACyBPTMWT ML (2.136)
2
1- < 1 1
( > < 85p) + 2?hAB;aA(p);aB(p) + hAChBD (—;KAB) (_EKCD) (2137)
1 P 1
= E((‘?Sp) + VA (p) VW4 (p) +?KABKAB. (2.138)
Substituting this into equation gives the claimed result. O
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Corollary 2.13.1. 0sp, V(j)(p) and K ap are all zero on the event horizon.

Proof. S — 0% as one approaches H* and by lemma [2.12] p approaches the non-zero, finite
value, %, as one approaches H™.
.. Since every term on the RHS of equation [2.131] is positive definite, the event horizon can

onl~y be regular (in the sense that Rgp.qR? — oo would be a curvature singularity) if dgp,
V%)(p) and K,p are all zero. O

In chapter [3 some very strong assumptions will be made about the topology of constant ¢ and
S surfaces. In particular, such surfaces will be assumed to be spheres. This is true near S™ 2
from the definition of an asymptotically flat end. However, it is also a true statement about
H = X, N H', which is a surface with constant ¢ and constant S, namely S = 0. For the
remainder of this chapter, I will work towards the proof of this latter claim.

Lemma 2.14. Let H be the intersection of the event horizon, H, with a spacelike hypersurface.
Then, the Ricci scalar of H is related to the Riemann tensor of the overall manifold by

R™M) = gaegtdR ua, (2.139)
where By is the induced metric on H.

Proof. R will be found by first finding the Riemann tensor of #.

Let X be a vector tangent to H and hence invariant under projection, i.e. 3% X’ = X¢.

Let K® be tangent to the affinely parameterised null generators of the event horizon, H. Let
n® be another set of null vectors on H such that K%n, = —1. Extend n® off ‘H by parallel
transport along K“.

Then, oy = Jap + Kanp + Kpng.

Let D, be the Levi-Civita covariant derivative on . Then, by definition,

DoDyX¢ = .56 VaDe X/ (2.140)
= 3%, 5%8° Va(B2, 87, V,X") (2.141)

= 3,550 %81, VaV o X" + B9, 858 5%V (57, ) Vo X
+ 8,558 Va(6%.) 8,V X" (2.142)

= B BB VaVe X + 8% 858 Va(B!, )V X9 + B 858 Va2V, XTI (2.143)

B4YVa(B2,) = B%(KIV gne + nIV K,) since 4 K, = 84 n. = 0.
Since H is a submanifold, there always exist functions, a,b,c & e and 1-forms, y, & z,, such
that n, = a(db), + by., K, = c(de), + ez, and on H, b =e = 0.

= BBV a(BY,) = BB (KN ane + 1V 4K, (2.144)
= 3% 8% (KIV 4(aV.b + by.) + nIV4(cV e + ez.)) (2.145)
= B 8% (K?Va(a)Veb + aK?V gV b + KV y(b)ye + KV gy.

+nIVy(c)Vee + en?VVee + nIVy(e)ze + enfVyz.) (2.146)

1 1
= 34,85 (—K IV g(a)ne + aKIV Vb + —Kngy,
a a

1 1
+ —nIVy(c)K. + cn?V Ve + —nngze) on H (2.147)
c c

= B% B% (aKIN Vb4 cnfVyVee) by BYK, = %ny = 0, (2.148)
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which is now manifestly symmetric in @ and b on H.
Meanwhile, 3¢, Va(5/,) = 6 (KgVan! + ngVaK') since ¢, K = 5¢n/ = 0.
.. By equation [2.143| and the subsequent results,
H)c
R( ) dabXd
= [D,, Dy) X¢ (2.149)
= 8% B8 [Va, Ve X7 +28% 8,8 (K Via(n) ) Vg X9 + ngVia(K) Ve X9)  (2.150)
= %855V, Vel X!
— 2% 8%8% Xy(Via(n )V K9 + Via(K')Vgn?) as K‘X, =n"X, =0  (2.151)

= BB 0 R 0 X = 26°, 3% 5% Xy (V1a(n! ) Vg K9 + Vio(KT)Van?). (2.152)
H)c
~R™e,,
= B9, ebﬁcf(Rfdge _ QV[Q(nf)Ve]Kd — QV[Q(Kf)Ve]nd) as X® is arbitrary. (2.153)
- R = gb R(H)adab (2.154)
= 5039,556% (R 4y — 2V 1y () V. Kq = 2V, (KT)V gna) (2.155)
= ﬁacﬁbd(Rabcd - va(nc)vd(Kb) - va(KC)Vd(nb) + vd(nc)va(Kb)
+ ValKo)Va(ms)). (2.156)

H is a Killing horizon. Since the expansion, shear and rotation are all zero on a Killing horizon,
GGV oIy = 0.

2RO = g (R g — Vo (ne)Va(Ky) — VoK) Valny)). (2.157)

Also observe that f®V,K, = 0 because ¢V, K, = V,K® = 0 as the expansion is zero,
Kn'V,K, = 0 as affinely parameterised implies K?V,K, = 0 and n*K*V,K;, = 0 by

KK, = 0.

That leaves R = pep¥ R, 4. O

Theorem 2.15 (Hawking and Ellis [16]). For each black hole in a stationary, regular pre-
dictable, four dimensional spacetime with matter satisfying the dominant energy condition, the
intersection of the event horizon with a spacelike hypersurface is homeomorphic to either a
sphere or a torus.

Proof. Let ‘H be the intersection of the event horizon, H, with a spacelike hypersurface, typi-
cally some Cauchy slice, >;.

.. H is a 2D spacelike surface. ‘H must be compact, because otherwise H would be extended
and thus incompatible with the M\J~(Z*) definition of a black hole.

. I can introduce two null normals, say K, and n,, to H. Without loss of generality, as-
sume that on H, K® is an affinely parameterised generator of null geodesics and that on H,
K,n* = —1. By multiplying both K and n* by —1 if required, choose K* and n® to both be
future directed and with n® pointing into the region bounded by H.

Consider a null geodesic congruence generated by n®.

Let o be an affine parameter for flows along n®. Let ) be the surface generated by flows along
n® and off H.

Let H, be the images of the points on H after flowing by o.

Since H is a spacelike 2-surface, for small enough o, so is H,.

Extend K off H as follows.

H, is a spacelike 2-surface with n® as a null normal.

.. Enforcing K%n, = —1 on H,, K*K, = 0 on H, and K, is normal to H, uniquely determines
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Ka

Figure 2.1: The set-up for theorem .

K®* on H,. This way, K is uniquely determined on ().

Extend K* off H, to create a H, in an arbitrary way while keeping K* null.

Extend n® off H, and into H, in any way that keeps K,n* = —1.

This construction is depicted visually in figure [2.1]

Since I've enforced K%n, = —1, and K*°K, = n°n, = 0 on each H,, the induced metric on
each H, must be Bup = gap + Kanp + Kynyg,.

My construction of the K* and n* also imposes a differential constraint on them. To see how,
let T* be an arbitrary tangent vector to H,.

Adopting the equivalence class of curves definition of tangent vectors, let T = [y(t)].

Let &7 : M — M denote flows along n®. Since H, is defined by flowing off the points on H, it
follows that [y(t)] goes to [®7 (y(t))] as one goes from H, to Hyyqr.

Choose ¢’ to be infinitesimally close to 0.

Then, [0 (v(t)] = (), [y(D)] = (=) [y(B)] = (@~ )*(T¢) = T* — o'(£,T)".

Since K, is defined so that it stays normal to H,, K, must adapt to these changes in T°.

0= K, (L, 1) (2.158)
= K, (n°V,T* — T"V;n®) (2.159)
="V, (K, T%) — TV, K, — K,T°Vyn". (2.160)

K,T* = 0 on all H, and n’V, is a direction derivative between H, when acting on a scalar,
like K*T,.

2.0 =nPVy(K,T%). (2.161)
2 0=Tn"V, K, + K, T°Vyn* (2.162)
=T (n"V,K, + K;V,n") . (2.163)

Since T is an arbitrary tangent vector, it follows that n®V, K, + K;V,n® must be orthogonal
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to H, Vo. Thus, I get the differential constraint,

0= B (n°V.K, + K.Vyn). (2.164)
5 BNV Ky = =K Vyn, (2.165)
= %n°V, K, since I enforced K%n, = —1. (2.166)

Let p® = B%n°V,K.. Hence, the identity says p® = f*n°V,K, = —PKVyn,. = fn°V K.
I will first try to prove
V(B8 VaK I3 3y, = BV a(pe) B + p°py — 5.V 1 (K987 Va(ne) 3
+ Ry KB, 87, (2.167)
The LHS expands out to
LHS = V,(5°) 3" Va(K I3, 3 + 8.V, (8%) Va(Kn? 57, 5,
+ BBV V(K93 7, (2.168)
= 0!V (6°)Va(K) B B% +n! V(8% ) Va(K)5°5% + nV Va(K)p°. 6%  (2.169)
In the 1st term, if K¢ or n® don’t get differentiated, then ¢ K¢ = 8 n® = 0.

However, when n® does get differentiated, n/V;n® = 0 from n° being tangent to affinely
parameterised null geodesics.

.". The first term in equation [2.169| can be simplified to

IV (B, Va(K)B°, 8% = n'n.V s (K)Va(K°)8°, 5% (2.170)
= P"Pe. (2.171)

The 3rd term in equation [2.169) is

nV.Vq (K B % = n°VyaV, (K B A% + n[V., V] (K°) p°5% (2.172)
=n°VaV (K°) B°,8% + R poqn°K7' 8%, 8%, (2.173)

*. So far, my analysis of equation simplifies to

LHS — RHS = n/V (5%, )Va(K°)3°.8% + n°VaVe(K) 5% 5% — 5Va(pe) 5%
+ V(K)Va(ne) 5.5 5, (2.174)
=nIV;(B%)Va(K)B% 8% + nVaVe(K) B, 8% — B*Va(B, 0!V K.)BY
+ V(K Va(ne) 5.6 8% (2.175)

= n!V(8%)Va(K) B 5% + nVaVe(K)B° 5% — BVa(B.)n' V s (K.) 5%
= BBV a(n )V (Ke) B — BB 0! VaV p(Ke) 3,

+ V(K Va(ne)pe.87 84, (2.176)
= !V §(8%)Va(K) B 5% — Va(B,)n! V (K)5°.6% — Va(n)V.(K) 6.5,
+ Vi (K)Va(ne) 5.6 5% (2.177)

In the 1st term, if K, or n. don’t get differentiated, then 5% K. = 59n. = 0. Also, if n. does
get differentiated, then nfV n, = 0 from the geodesic property.

- IV (BL) VoK) 3% = n/niV (K.) Va (K9) 52,55,

Then, K°K, = 0= K°V;K, = 0, removing the K°n; term from 3.

For the n®K, term, n/ V(K. )n® = —n/V(n®) K, = 0.
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IV ()Tl = n i (K,) Vi (K) 9,6 = nlniV () Vg () 6,
Similarly, in the 2nd term of equation 2.177] if K or n® don’t get differentiated, then 5% K*
and 3%.n° equal 0.

LV a(B)nI V §(K) 5%, 3% = neVa(K)n Vi (K) 3. 5% + KVa(n)nf V (K°) 6, 5% (2.178)
=n V(K V(K)B%B% +0 from k VK¢ =0 (2.179)
= —K V(K V(n)5°. 57, (2.180)
=0 from the geodsic property. (2.181)
Hence, equation simplifies to
LHS — RHS
=n'nV; (K,) Va (K°) 8% = Va(n)Ve(K) .59,
+ V(K Va(ne) 5.6 84 (2.182)
= n/niV; (K,) Vg (K) B, — Va(n)Ve(K) 5% B4,
+ V(K Va(ne)5°.6% (g7 + Kn! + K/n°) (2.183)
=nIn'V; (K;) Va (K°) 3% = Va(n)Ve(K) 3% B% + Ve(K)Va(n) 5.0
+ KnIV i (K)V4(ne)B%B% +0 from n°Vgn, =0 (2.184)
=n'n?V; (K,) Va (K) 8% + Kn!V 1 (K°)V 4(n.) % 5% (2.185)

=nIniV; (K,) Vq (K) B — nn! V(K V. (K4)3%8% by the p, expressions.  (2.186)

Now, in the 2nd term, K9V K, = 0 and n°V, (K4) n¢ = —n°V, (ng) K¢ =0
. LHS — RHS = nfnde (Kb) Vd (KC) Bac — neanf(KC)Ve(Kd)ﬁ“c(Sdb = 0.
In summary, the proposition of equation is true.
Next, contract both sides of equation with 3, .
. LHS = 8%, V(8.8 VaK)n? 8", (2.187)
— 5baneve(5ac dech) ( )
= n°V.(8°, 8% 3% V4K — nV(6°,) 5% 5% VaK® (2.189)
= nV (B VaK®) = n°V(8°,) 8. 04 VaK*. (2.190)
On the horizon, H, 3% 3% V4K¢ = 0 because the expansion, shear and rotation all vanish on a
Killing horizon. Furthermore, in general, 3% VK¢ = 0, the expansion along the K¢ direction.
Hence, on H, I'm left with LHS = n*V 0k = d(%{.
On the RHS, I'll go term by term.
BV a(pe) 84 6% = 8V apy. (2.191)
P, = BonIV(Ka)poBy = B0V e(Ka)ps = D" Pa- ( )
BNV () BV a(ne) 8%5° = 558° V(K Vi(n?) (2.193)
=0 on H, as above. (2.194)
RcdefneKdBacﬁfbﬁba = RabcdnCKdea ( )
= R, n°K"(6% +n'K, + K%n,) ( )
= — Ry K’ + 0 + Rupeg KK nn? ( )

Hence, putting all the pieces together, on H I have

do
= BV + 90— R Kn® o+ Ropea K"K n. (2.198)
g
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Next, let K’ = e/ K and n’ = e /n for some function, f.

S Ky = -1, K*K, = 0 and n®n, = 0 remain true everywhere.

In what follows, only f’s value and variation on H will matter, so I'll assume without loss of
generality that n*V,f = K*V,f = 0.

V" = e InV, (e7n’) = e ¥ nV,nb — e nPnV,f =040 =0.

. n'* remains a tangent to affinely parameterised geodesics.

Products like K®n® remain invariant because the e/ and e~/ cancel.

The shear, rotation and expansion likewise remain zero on H because

ﬁacﬁdbvd([(,c) = Bacﬁdbvd<ech> = efﬁacﬂdbvd([(c) + efﬁacﬁdeCvd(f> =0+0=0.

. On H, I can use equation to say

df g

P BV apy + 0Py — Rap K0’ + Rapea K“ K n"n. (2.199)

Re-writing in terms of the old variables,

p/a — Babn/cvaé — ﬁabe—fncvb (ech) — pa 4 BabncKcvb(f) — pa _ Babvbf.
Then, KV, f = n’V,f =0 = p'® = p* — ¢V, f = p* — V°f.

.. On H,

df g
do’

= B oy — BV Vo f + 0D, — Ry Kn® 4+ Rapeg K K nPn. (2.200)

Let D be the (Levi-Civita) covariant derivative on H.
.. From the properties of the induced metric, D*D, f = 3% 3°,V°V.f = 3%°V,Vif. So, on H,

dbg

do’

DD, f is the Laplacian of f on H.

Since H is compact, there applies a theorem of Hodge that for a function, F, 3f such that
D*D, f = F if and only if fH FdA=0.

Let (F) = & [,, F dA, with the area, A, well-defined because # is compact. Note that (F) is
just a constant on H.

o Jy(F = (F)dA = [, FAA — (F) [, dA = A(F) — A(F) = 0.

. 3f such that DD, f — F' is a constant (namely —(F")) for any F.

.. I can choose f in equation so that f*V.py, — D*Dyf — Ry Kn® + Rapea KK nbn? is
a constant on H.

. (1;7’5' — p/*pl, is constant on H with that choice of f.

I can now finally get towards the topology part of the proof. Let Hy be an arbitrary connected
component of H, i.e. Hy is what one intuitively thinks of as the boundary of an individual
black hole. Since H, is a 2D compact, connected, closed surface, the Gauss-Bonnet theorem
says x(Ho) = += fHo RMAA. By lemma m,

BN upy — DDy f + 9D, — Ry Kn® + Rapeg K“K “nPn. (2.201)

RUD = paegbip (2.202)
= (9" + Kn® + Kn)(¢" + K’n® + Kn") Ropeq (2.203)
= R+ RypgK"n® + Ry Kn® + Ry Kn° 4 Rapea K K nn® 4+ Rapeg KK nn®

+ Rae Kn® + Rapea K K nn® + Rapea K Knn® (2.204)
= R+ 4Ry Kn" — 2R e KK nPn®. (2.205)

This expression is invariant under the e*/ scalings I performed earlier, so I can use it liberally.
The Einstein equation says Ry, — %Rgab = 8nl,,.
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. Contracting with K%n® and using Kn, = —1, RgpKn® + %R = 8T Konb.

2. RM = 167T,, Kn® 4+ 2(Rypy Kn® — Rapea K Knn). (2.206)
1
S X(Ho) =4 / TKn"dA+ — [ (RapKn® — Rapea K*Kn"n®)dA. (2.207)
Ho T JH,

Next, observe that since H has no boundary of its own, fHo D*D,fdA = 0 by Stokes’ theorem.

Likewise, in proving 3% p®p, = p°p, earlier, I actually showed 5% p® = p®.

L Dp, = %8V = BVapy = [, BVapydA = [, D*pydA =0 too.

Sx(Ho) = 4 / T Kn® dA
Ho

1
+o- (Rap Kn® — Rapea K*Kn®n® + DD, f — 3%V .pp)d A (2.208)
Ho
/
=4 / TwK*n®dA + L (p;p’“ _ Y% > dA (2.209)
Ho 27 Jyu, do
Ag dfx:
=4 | TpK*n"dA+ = (plp™ — : 2.210
[ zarcetans 52 (v - ) (2.210

where Ag is the area of H,.

Since K and n® are null vectors and I've assumed the dominant energy condition, T, K%n® > 0.
.. The only way x(Ho) can be negative is if dgf/ > plp'.

B%p° = p* and B being a projection operator means p? is a valid tensor on Hy. Since Hy is
spacelike, it follows that p/p® > 0.

By construction, n® pointed into the black hole region. Hence, negative values of ¢ correspond
to points outside the black hole.

.0k =0 on a Killing horizon - as H is - and
off Hy outside the black hole.

.. There is an outer trapped surface.

However, in a regular predictable spacetime, outer trapped surfaces must be contained inside
the black hole region.

0/

ja, >0 on Hy = 0Ox < 0 at all points just

X(Ho) > 0.
Since the only compact, closed, connected 2D surfaces with non-negative Euler characteristic
are the sphere and the torus, the proof is complete. U

The torus case has subsequently been ruled out using “topological censorship” methods - e.g.
see [21) 22, 23]. However, these methods are completely different to what I've built so far in
this chapter, my understanding of those topics is a little unsatisfactory and it’s also quite the
diversion to explain topological censorship here. Hence, I won’t elaborate on those results any
further.
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Chapter 3

The beginning - Israel’s original proof

In this chapter I will present a full account of the original black hole uniqueness result, due
to Israel [1]. Many of the details of my presentation are taken from [I5]. However, across all
areas of the literature, it’s a little unclear exactly what assumptions are made in proving this
theorem, so I've put together what I believe to be a comprehensive list and proof.

Theorem 3.1 (Israel [I], [15]). Let (M, g) be a spacetime with the following properties:
1. M is 4 dimensional.
2. M 1is time orientable.
3. (M, g) is asymptotically flat.
(M, g) is static.
d(k*k,) # 0 at all points, where k* is the Killing vector field making (M, g) static.
The event horizon 1s non-empty and connected.

The energy-momentum tensor is Ty, = 0.

o RS> G

dS # 0 at all times and in Israel coordinates (see equation earlier), constant t and
S surfaces are diffeomorphic to spheres.

Then, (M, g) is isometric to the Schwarzschild spacetime, with metric

2M 1
g=— (1 — T)dt ® dt + 1_—2_Md7" ® dr + r*df @ df + r*sin®*(0)d¢ ® dg. (3.1)

Assumptions 2, 4 and 5 justify the use of adapted coordinates, while assumption 8 justifies
the use of Israel coordinates. From assumption 7, the Einstein equation is R, = 0, meaning
the equations of motion are 0" S = 0 and RE?) = %VEh)Vgh)S , by theorem . Assumption
3 justifies the use of asymptotics as per definition 2.7} Finally, I will also need the following
property.

Lemma 3.2. 0 < S < 1 everywhere on ;.

Proof. Since O™ S = 0, the Hopf principle says S is extremised on the boundaries of %,.
On the inner boundary, H, S = 0 and by equation [2.57, S — 1~ on the outer boundary, S72.

Hence, the claim follows. 4
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In summary, the task is to solve the following problem.

Definition 3.3 (Problem summary). Given the pair, (X, h), the problem studied in this chapter
18 summarised by the equations,

1
OMS =0 and R = gvg’”vg’”s, (3.2)

and the boundary conditions, S =0 on H, 0 < S < 1 everywhere and

m M m 2M
S:1——=1—7&hij=<1+7)5ij:(1+7)5ij (3.3)

2r
at S,

Proof of Israel’s theorem. First, I'll need two expressions in Israel coordinates, namely

vV = 9,9;8 —1"* v g (3.4)
—0— "k ji0k1 in Israel coordinates (3.5)
= —F(h)sji and therefore (3.6)
D(h)S — _hijF(h)S (37)
11
= —p——a sp + A ;KAB by lemma, [2.10 (3.8)
K
Then, since O S = 0,
85/) = sz. (310)

The main substance of the proof proceeds by constructing some seemingly bizarre linear com-
binations of the Einstein equations that when integrated miraculously conspire to prove the
theorem.

The Einstein tensor vanishing means éGtt + %ng = 0 too.

1

1
0= ZR" + —G3+ —S(h sOMs — VY™ g) by corollary [2.4.2 (3.11)
P
1 1 1 1 K\ 1
_ —RM G+ —(p?* — =0 =) +-9 b t dB.9
5 +p2 + 725 p e sp+p +p5p y equations [3.6] and [3.9]
(3.12)
_ Lpo + G Lk (3.13)
- 9 SS pS .
0 2 AB _ 2@ 2
= —(R™W — K? - K s KAP — Z20W ) — 294K
2 P P
1 - 1
+ 5(—R(h) + K? — K pKAP) + — K by corollaries 2102 and 2.10.3 (3.14)
p
1 1
= —KupKAB — —O®, — —aSK + —K. (3.15)
p psS
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The O® term is re-written by

2 z 2 7 1 A
Zah, p=yha (—V(h)p> 3.16
1 5 1 - 7
R B PP v (DX (h) . 1
S0 2p2V (V' (p) (3.17)
2 7 1 1 1
0= K pKAB — O 5 _—_yhA v — 295K + —K. 3.18

Let Lup = Kap — %ﬁ A K Dbe the traceless part of the extrinsic curvature. In terms of this, the
identity I've been working with becomes

1- 1-
0=— (LAB + §hABK> <LAB + 5hABK> —

2 _; 1
=W s — — v, \AR) P
S0V Ve
1 1
0sp+ s (3.19)
= —Lagl?P — 1[(2 — lm(ﬁ)\/ﬁ_ LV(B)A(p)V(E)(p) _ laSK_‘_LK (3.20)
" 2 NG 202 4 p R '

The second, equally obscure, identity I'll need is 0 = éGtt + /%GSS'

3
0= —R(h +— Gss + S( ssOMS — V(Sh)v(sh)S) by corollary [2.4.2 (3.21)
3 3 1 1 1
_ Lpm 2GW 2 - S0sp+ —K )+ =0sp) b t d[3.9
5 +,02 + 75 p = sp—l—p +psﬂ y equations [3.6] and [3.9]
(3.22)
1 3 3
= —R(h + GSS + p—SK (3.23)
2
<R(h — K? — K K42 — Z0O0W)p — —aSK)
2 p P
3 ; 3
+ 5(—}2(’0 + K? — K pK4P) + — K by corollaries 2.10.2] and 2:10.3 (3.24)
p
; 1 1 3
—RW 4 K? — 2K g K48 — —0OW)p — Z9gK + —K (3.25)
p p pS
; 1 1
= —RW —2L,5IAP — —OW)p — 94K + ENS (3.26)
p p pS

This time, the O® term will be re-written using

; (1 1 g 1 ;
OM Inp = vA (—v(j)p) = -O0Wp — SOV ). (3.27)
p p p*
; 3
2 0=—R® _2p,,14B —OWn,y— —v WAy ®, —aSK +osK. (328)
p? p
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Next, observe that

Svp, (KVEY __Syp( Vi Ve EVh K@S\/_ KV hdsp (3.29)
\/—5 S\/p \/— S\/p 52\/— S\/p 25 p3/2 :
K K&S\/_ Kdsp
= —OgK + _ (3.30)
S Ve
= —0sK + g — pK? + %pK2 by equations and (3.31)
K 1
= —0sK + = — =pK*. .32
85 + g 2p (3 3 )
Substituting this back into equation I get
1 > KVh
LapLAB + — V@A v W (o) = - = O® /5 - as( ) (3.33)
22 S
p VP /5 oh VP
—iﬂ \/_ 83({2\/5) as hap is Riemannian, (3.34)

with equality if and only if L4 = 0 and VEP p=0.

Similarly, again using 9sVh = VhK p and dsp = p?K from equations [2.64] and |3.10| along the
way, observe that

as(KSﬁ + 4ﬁ) _KVh + SVhOSK K25V + K25V

p p? p p
AKVh 8KV
. Vi 8KV (3.35)
p p
_ 3KVh ) S\/ﬁasK_ (3.36)
p p
Substituting this into equation [3.28] I get
0=—R™ — 2L,z L% —OMnp— izv napyv®, — ! . aS(KS\/E + 4\?) (3.37)
p SVh p P
KS 4
( p\/— \/_) < —SVI(R! M In p), (3.38)
where, again, equality occurs if and only if Lap = 0 and V(j) p=0.
Then, by equation (3.34],
-
/ as( \/_)dSAdeAdx?’g —2 \/_ O™ /pdS A da? A da. (3.39)
S\/_ P
0 ( )dexQ/\de < -2 / / Vi O™ (/p) da® A da®ds. 3.40
/ / (5 (3.40)
—q 1
KvVh 1 [ '
S === dz?Ada® < —2/ —/D<h> p)e™ ds 3.41
/57 ] 5 [P0 (3.41)
(3.42)

28



with the last line following by Stokes’/divergence theorem and spheres having no boundary.
Similarly, by equation [3.38]

/ Os (KS\/E + 4\{5) dS A dz? A da?
e P p
< - / SVR(R® +0® In p)dS A da? A da. (3.43)
Xy
7 771
/ [KS\/Z + 4\?] dz? A dz?
p P’ 1o
1 — - .
< - / S / VRER® + 0 1 p)da? A dz®dS (3.44)
0

1 -
= — / S / VER®da? A dztdS by the Stokes’/divergence theorem again (3.45)
0
1
= —87r/ SdS by the Gauss — Bonnet theorem (3.46)
0

= —4r. (3.47)

Now I have to evaluate the integrals on the LHSs of these inequalities. First consider S = 0,
the event horizon. Then, by lemma [2.12] p = 1/k. From equation [3.13]

K 1 1
— =—zRW - ZG{ 3.48
pS 2 pg SS ( )
1
= ——QGgLS) since the Einstein equation implies R = 0 (3.49)
p
1 ~
= —5(—}?,(’” + K% — K43K“P) by corollary [2.10.3| (3.50)

By corollary [2.13.1} it follows that p% = %R(h) on the event horizon.

KVh 1 e
—\/_ dz? Ada® = —— /R<h>\/ﬁdx2 A dz? (3.51)
SVP 5o 2Vk
4
= \/—7% by the Gauss — Bonnet theorem. (3.52)

For the other integral inequality,
/ KSVh  avh
T
p p

where A is the area of the event horizon.
The other part is S = 1, the asymptotically flat end.
By definition 2.7}, to leading order

do® Ada® = /(O + 4> \/;)de Ada® = 4K*A (3.53)
S=0

S=1-

% (3.54)

By definition, 1/p? = V" ($)V®i(5). Near infinity, I can raise and lower indices with & and
I can use the asymptotically Cartesian coordinates.
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VIS = ds = Mdr = VI(S)VOI(S) = Lpr = 2 — = p2/M.
Then, for the extrinsic curvature, by equation [3.10],

_Osp_ 1 d T_2 M? T_&M 2 (3.55)
T2 dS/drdr \M )t T MM r? T '
Now, I'm ready to evaluate the S = 1 integrals.
/7
—\/E dz? A da® = lim/ / T sin(f)dfd¢ (3.56)
SVP 1521 ree

=8V M. (3.57)
/ <KSp\/Z - 4;?) dz? Adz® = lim / / (T — 4M2> r*sin(f)dfd¢  (3.58)

S=1
~0. (3.59)

In summary, the integral inequalities I derived reduce to 87v/M < % and —4k?A < —4r.
M < i and A > 5
However the Smarr relatlon says M = 4 , so the first inequality becomes A < %5
*. The two inequalities can be consistent only if they were actually equalities to bggin with.
As I proved earlier, equality occurs if and only if Ly = Kap — %EABK =0 and V(;)p =0.
The latter equation means p depends only on S, since covariant and partial derivatives are

identical on scalars.

*. Equation [3.10| becomes K = p%g—g = -4 <1>

.. K also depends only on S.
With the results so far, equation reduces to

2
= (1) —as (a8) * sas 5
2 2
i (35) - 58t e (3.61)
oo o o 1dp 35 <%)2 (3.62)
p32ds?  p32dS  2p5/2 \dS

dO}S' ( 52 jg + fp). (3.64)
SOy = ;32 jg + fl/Z (3.65)

for some integration constant, C[f] The ODE left is separable. I get
% - _Clp;f—l— 4p (3.66)
“In(S) = / T (3.67)

T will be arbitrarily relabelling and scaling the integration constants without any further mention.
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Let p = /p. Then, dp = 2pdp.

—1In(S) = / ﬁ (3.68)

= %m(p) - % In(4 + Cyp) + Cy for some constant Cy.  (3.70)

g 422(;119 — p= 52%02' (3.71)
p= (52f—102)2 (3.72)

r2

I showed earlier that near the asymptotically flat end, p = %7 and S? =1 % to leading
order.

M 1 oM 1=y 41 —Cy)M  AM?
G ( r 02) Gy rCy * Chr? (3.73)
.Cy=1and C; =4M. (3.74)
AM
p= TDE (3.75)
. d (1 S(1—5?%)
SR = —19 (—) 7 (3.76)
Then, by equation [3.50jand L, = 0, I get
i 2K
(h) — 2_ - 7AB
R pS + K 4hABKh K (3.77)
2K 1
= 4+ _K? .
5 + (3.78)
C2(1-5%)2S5(1—-5%)  15%(1—5%)7?
S A M 2o (3.79)
(1—5%)?

Since R™ depends only on S and the constant, M, and every constant S surface is assumed
to be a sphere, each constant S surface is a sphere with a constant scalar curvature.
A corollary of the solution to Liouville’s equation says that the only metric on the sphere that
yields a constant scalar curvature is the round metric.
c hapde? @ dzP = r2(df ® df + sin?(#) dp @ d¢), where r is the area-radius of the sphere. A
sphere with this metric is known to have Ricci scalar, R? = 2/r2.
2 = U e g2 2

© o2 2M? r
Since this equation between S and r is one-to-one, I can swap S out for r in the adapted
coordinates. Then, the term in the metric becomes

7456 ds - (1_2?_42%)401( 1_%@(1( _M) 51)
Fdr@ \/7 (3.82)
:%, (3.83)
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Hence, I can finally conclude that the metric is

g =-S5t ® dt + p*dS ® dS + hpdz? @ dz® (3.84)
B 2M dr @ dr 9 9
= (1 7) dt@dt+T]\4/r +r°(df ® df + sin*(0) d¢ ® do¢), (3.85)
which is the Schwarzschild solution. g
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Chapter 4

The end - the most comprehensive
proof

In this chapter I'll present the most comprehensive proof of the Schwarzschild solution’s unique-
ness among static, asymptotically flat spacetimes. My exposition is based on [7].

Theorem 4.1 ([5, 6 [7]). Let (M, g) be a spacetime with the following properties:
1. M is n dimensional.
2. M 1is time orientable.
3. (M, g) is asymptotically flat.
4. (M, g) is static.
5. d(k®k,) # 0 whenever k®k, = 0, where k® is the Killing vector field making (M, g) static.
6. The energy-momentum tensor is Ty, = 0.

Then, (M, g) is isometric to the Schwarzschild spacetime, with metric

1
g=— (1 - ﬂ) dt @ dt + 1—md7‘ ®dr + r?ggn-2. (4.1)

Tn—3

rn—3

Most saliently, theorem doesn’t make assumptions about event horizon connectedness or
spacetime dimension, unlike [I, 2, B]. The actual PDE problem to be solved is ultimately
exactly the same as chapter [3]

Definition 4.2 (Problem summary). Given the pair, (¥4, h), the problem studied in this chapter
18 summarised by the equations,

1
0Ms =0 and R = cV"VIs, (4.2)

and the boundary conditions, S =0 on H, 0 < S < 1 everywhere and

m

m
S=1- opn—3 & hij = (1 + m) (5@' (43)

at S,
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Figure 4.1: The construction of the manifold, 3, invented by [5].

Proof. The genius of Bunting and Masood-ul-Alam’s proof [5] lies in the construction of a
specific new manifold, >, I'll describe below.
It begins by considering two conformal transformations,

hyi; = Qihij where (4.4)
1+ S 2/(n—3)
o (125 0

Note that 2. are well defined conformal factors because 0 < .S < 1 in definition 4.2]

Let the copies of ¥; with these metrics be denoted ¥ = (3, hy).

Since S =0 on H, Q+|H = Q—|’H - h+|7—l = h—|7—['

.. I can glue X, and X_ together along their inner boundaries, H, and H_ respectively, to get
a manifold which still has a continuous metric,

. h x
h = + on + . (46)
h_ on X_

The resulting manifold now has two asymptotically flat ends - one each from >, and »_.

Let P be a point at infinity and get rid of the asymptotically flat end from ¥_ by performing
a one point compactification with P on that end.

The resulting manifold is 3 and is depicted in figure . In summary, S = {P}UX_UX,, with
a one point compactification between P and ¥_ and a gluing between the inner boundaries of
Y, and X_.

3> has a number of great properties.

It has just the one boundary at infinity and has no inner boundary.

Consider the one point compactification in more detail. Since an asymptotically flat end is
diffeomorphic to R”~! minus a compact set, the smooth structure is identical to the one point
compactification of R*™! to S"~1,

However, this is Riemannian geometry, so one would need the metric to also extend well to P;
I’ll show this happens too.
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From the asymptotics of S in definition [4.2] to leading order, near P

0 _ (LSO m e omy 2 1 e
-2 B (27’"—3> B (5) r2 (4.7)
1 /m\2/(n=3)

The r — oo limit, to get to P, cannot be defined in this coordinate system, but it can by
changing to z; = T%:cl z; = 0 would then be P. T’ll still raise and lower these indices near
infinities by 0, so all indices can just be subscripts.

1
r? = mr, =iy = ziz = —- (4.9)
r

2
Sd(ziz) =d(1/r?) = —T—Sdr = dr = —1r’zdz. (4.10)

Hence, in the z; coordinates, to leading order h_ is

1 2/(n=3)
1 2/(n-3)

=1 <%> d(r’z) ® d(r'z) (4.12)
1 2/(n-3)

= (%) (r*dz; + 2rzdr) @ (r*dz; + 2rz;dr) (4.13)
,
1 2/(n—3)

=1 (%) (r’dz; — 2r'z;2;dz;) ® (r*dz; — 2r'zizd ) (4.14)
,
1 /my\2/(=3) 6 <

= (5) (r'dz; @ dz; — 4r°z2z;dz; @ dz; + 4r°22,252,d2; ® dzy) (4.15)
,

2/(n—3)

This now is smoothly extendable to z; = 0 < r — oc.

S his smoothly extendable to P.

Furthermore, h is smooth everywhere else too, except perhaps on the join between H_ and
H. . Even there, on directions parallel to H., smoothness is inherited from Q. and ;. It only
remains to see how the derivatives behave perpendicular to H...

As a proxy for that, one typically uses the extrinsic curvature of H..

Upon a conformal transformation, i’ = Q%h, the extrinsic curvature transforms as [15]

Ky = QK+ (i — niny) VK (In(Q), (4.17)

where n; is a unit normal in the A’ metric.
By corollary [2.13.1 Ki(]h) is zero ['|on H.

K = g (haiy — ning ) VR (In(Qy)) (4.18)
1 . 1

= Ng (W}lw - nmJ) 24/( 3)V(h)k(1H<Qi)> as Q:t = m on H (419)

= nk(hw - 24/(”_3)ninj)v(h)k(ln(Qi)). (420)

LCorollary [2.13.1| only says K45 = 0, but in the Israel coordinates used there, Ko; = 0 automatically, so
the whole tensor is indeed zero.
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On H., the derivative in this last expression is

1
v (In(Qy)) = Q—ivg’”gi (4.21)
1+ 2/(n—3)
_ /=g ) ( 5.) (4.22)
2 H
1 2 1
_ 92/(n-3) 1Y om
=2 IO e— (4_-2) V7 (9)|x (4.23)
h)
=+— 3V( ()| (4.24)
Hence, for the extrinsic curvature I get
2
K = £y = 270 ning ) VOH(S) . (4.25)

Since 2y = 2_ on H, the normal, n;, is of the same magnitude for both ‘H, and H_; only the
direction is flipped. This direction flip cancels the 4+ in the last expression to mean that the
extrinsic curvatures do match when H. is viewed as a single surface in 3

- his at least continuously differentiable everywhere.

The next property of 3 I'll need is its Ricci scalar.

Upon a conformal transformation, ' = Q%h, the Ricci scalar changes as [17]

RM™  (n—2)(n—5) 2(n —2)
Q2 Q4 03

Since R = 1v"VMS and OMS = 0 in definition [4.2, R® = pTR®) = LOM 5 = 0.

RW) —

v (Q)vmiQ) — OMQ. (4.26)

) — .
- R0 = —”m (”Q 5v§h>(9i)v<h>@(9i)+zm<h>9i). (4.27)
+ +

The derivatives are

3< 3

_ 13(125)(M VS and (4.30)

L OMQ, = i—V ((1i5> e 3)> Vs asOMs =0 (4.31)
- 2(2_—2)2 (HQES)(S o V(S)VI(S). (4.32)

Substituting these expressions back into equation says

) 1+ —2/(n—3) 1 14+ —n)/(n—3) ‘
RO — " <(n _5) (—S> : ( 5 ) v (5 ()

03 9 n—32\ 2
5-n (1486 2/ 03 .
M ( 5 ) VEh’<S>V<h”<S>) (4.33)
—0. (4.34)
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The final property of S I'll need is that near its asymptotic end, to leading order, the metric is

141 —-m \#¥n=3 m
2p. 2rn—3 1 N n
Q+hz] ( 9 ) < + —(n — 3)7‘”_3) 61] ( 35)
m \4/(n=3) m
- (1 B 47~n—3> (1 T m) 03 (4.36)
- (1 =3 T gy O )) i (4.37)
=0+ O(1/r"?). (4.38)

.3 has zero ADM energy.

In summary, I've shown so far that 3 is a complete, asymptotically flat end with zero ADM
mass, zero Ricci scalar and continuously differentiable metric.

.. From a corollary to the positive energy theore (3, h) is in fact just (R™1, ).

.. Taking >, without loss of generality, as the copy of >; within 3, it follows that the metric
on X is

1 2 4/(n—3)
NN S S 4.
o = g7 ( = S) 5, (4.39)

S is still unknown though. It will be easier to find it by changing variable to

2 2
=—— & S=--1 4.40
T + S s (4.40)
The OMS = 0 condition says
0=0"S = h79,9;5 — hT™* 9,8 (4.41)

In terms of s, these quantities are as follows.

DS = O (g - 1) _ —8—223ks. (4.42)
00,5 = b, (—S%ajs) _ %ai(s)aj(@ - S%aiajs. (4.43)
Mk = %S—W—?’)(skl (95 (s D5) + 0,(sY D) — (Y D)) (4.44)
= ﬁ(a’zaﬁ +6%0;5 — 6i015). (4.45)

2There is some subtlety here. There are several proofs of the positive energy theorem, with Schoen & Yau’s
[24] and Witten’s [25] being the most popular. Witten’s proof works in all dimensions, but requires the manifold
to be spin. Schoen and Yau’s does not, but was known not to work in arbitrarily large dimensions - although
recently they claim to have generalised their ‘spin-free’ method to all dimensions [26]. I am going to brush
these subtleties under the carpet and simply assume the theorem holds.
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Putting these expressions back into the 0" .S = 0 equation says

0= 3—4/(n—3)5ijaiaj5 _ 3—4/(n—3)5ijr(h)kjiaks. (4.46)
o4 2 o2 2
0= oY (;&(3)8](3) — 8—2(918]5) -0 Jm@ki@js + 5kj8i3 — 5jiak8) (—gaks) (447)
= SI(0)ils) — 5V D)) + D))
T3l GO T VS (n—3)s3ls e (n—3)s3zs i\
4(n —1)
~ ()05 (s) (4.48)
2
—S—2V23 (4.49)
0=V2s (4.50)

There are three parts to any boundary value problem.
1. PDE: Vs = 0.
2. Boundary conditions: s =0 on H and s — 1 + 7 to leading order near Sz,

3. The boundary itself: H and S™ 2.

The third condition is usually not worth mentioning - one can’t have a boundary value problem
without saying what the boundary actually is. Usually, the boundary is obvious. However, in
this case, although I know how s behaves at the boundary, I haven’t yet actually determined
what the boundary, H, actually is. Its shape, its number of connected components etc. are all
still unknown.

H’s topology will be easier to determine by analysing H., which has the same topology.
From equation [£.25]

2
Kg“—) - 3nk<hij = 200, ) V(S |y, (4.51)
o(n+1)/(n—3)
R i (his — ning) VE(S) |, (4.52)
o t1)/(n-3) )
= VY S, (4.53)

where h. is the induced metric on H..

H is a constant .S surface, so Vgh)S X N.

From lemma [2.12) V" (S)[,V®¥(S) |y = h9V " (S)3 V" (S)]3 = w2 Note that & is only
a constant on each connected component of H,. Different horizon components could have
different surface gravities.

2RIV (8) 3V (8) 3 = 29/ DRI (8) 5,V (S) 5y = 24 k2, (4.54)
: 1 (h)
b 9(n+1)/(n—3) - 9(n—=1)/(n=3) . _
. Ki(j +) _ — nkv(h)k(s)‘ﬂhﬂj = ——3 hiij. (4.56)

The fact Ki(f*) is a non-zero constant scaling of h,;; can be used to prove each connected
component of H is a round sphere, using a theorem from [27] I'll describe below.
Let X® be the components of a vector tangent to H, and let D denote the covariant derivative
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on H.. Furthermore, h, = ¢ from equation let 2° be the associated Cartesian variables.
Then, V") = 8, and

onD/(B e N ol )
DJ (n—_31' —nNn ) = h+ kh_,’_ljvl + (n——?)mk — nk) (457)

on-1)/(n-3), o
= Rk R R vk (458)

n—3
on=1)/(n=3)y_ o
on=1)/(n=3); s
=0 by equation [4.56] (4.61)

Going back up the equation chain, this means

- (n—=1)/(n=3) - 2(n—1)/(n=3)
i (h 2 K i K
0= h+ kh+ljvl +) (—n _3 l‘k — TLk) = h+ kh+lj81 (Tl’k — nk) . (462)

(n—1)/(n—3) .
: QTLTF"$IC —n* is a constant on each connected component of H,. I'll call that constant
¢t, where ¢ can depend on the connected component in question.
Then, 1 = n'n; = 6 n;n; means

r —cC

= 1. (4.63)

9(n=1)/(n=3) .
’ ‘ n—3

.. The points, x, which lie on H, lie on spheres of radius, ”7_32*(”*1)/(”*3), and centr, c.
Since hy = 9, the induced metric on each of these spheres is the standard metric on the sphere.
Then, since €2, is just a constant on H, the connected components of H are also just spheres
with the round metric.

As long as H, is geodesically complete, I can start at a point, p € H,, view geodesics of
H. as being in S" 2 and follow to arbitrary affine parameter to deduce that each connected
component of H, is a full sphere - not just contained within a sphere.

Indeed, H is geodesically complete because the event horizon is assumed to be non-singular
and a spacetime is singular if and only if it’s inextendable and geodesically incompleteﬂ

The final step in completing requirement 3 of the boundary value problem is constraining the
number of and relationship between H’s connected components.

Suppose H is disconnected, for a contradiction.

‘H, H, and H_ all have identical topology and smooth structure - only the metrics are scaled
by constants.

> =3, UY_U{P}=R"" from earlier.

. X_U{P} is a disjoint union of multiple closed balls, with the surface of each ball being one
of the connected components of H .

*. Y is also disconnected, as P is just a point at infinity. 4

This contradicts >;’s connectedness, because Y is topologically identical to ; by construction.
.M is a sphere with radius, 2=22-("=1/("=3) "and the standard metri

3The centre’s location can be arbitrarily adjusted by changing coordinates; it has no physical meaning.
4Note that H and H have the same geodesics because €2 is a constant on H.
5Note that  is fully determined by m because the radius determines the sphere’s area and then I can apply

the Smarr relation, m = m_%’;ﬁ. Hence, there is just the one free parameter in play, m.
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It remains to consider parts 1 and 2 of the boundary value problem.
Let s; and sy be two solutions of the boundary value problem. Then,

VQ((S1 — 32)2) = 28Z((81 — 52)8i(31 — 82)) (464)

= 282'(81 — SQ)@i(Sl — Sg) -+ 2(81 — 52)V2(31 — 82) (465)

= 2||0(s1 — 89)||* as V?s; = V253 = 0. (4.66)

/E 2051 —sa)| P = [ 951 = s0)) (4.67)

= 2/2 Di((s51 — 82)05(51 — 89))d" 'w (4.68)

= 2/ ni(sl - 82)8i<81 - Sg)dn_2l’
S

oo
n—2

— 2/ ni(sl — 52)8i(81 — Sg)d”fo. (469)
H
On H, s; = s9 = 2, so the second integral is zero.

Near S72, the asymptotics mean s; — sy is O(1/r"73), so the integrand is O(1/r?"°). This is
sufficiently fast decay for that integral to be zero.

/ 2||8(51 — 82)||2dn_1$ =0 <— ||8(51 — 82)||2 =0 < 51 = $9. (470)
pI

.. The solution is unique.
Since the Schwarzschild solution solves all the conditions in definition 4.2} it must be unique
solution in question. Il
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Chapter 5

The aftermath - contemporary research

The proof in chapter |4 and its subsequent extensions mean the static, asymptotically flat
uniqueness problem has largely been solved. Modern researchers have mainly pursued three
variations on the results I've discussed thus far.

1. Non-zero cosmological constant, A.
2. More exotic matter fields.
3. Avoiding the positive energy theorem.

Problem 1 is of significant physical importance and much remains unknown in this case - see
[28, 29] for some comments and recent results for asymptotically de Sitter and asymptotically
anti-de Sitter black holes respectively. I only fleetingly considered problem 1. Problem 2 is
often motivated by theories of supergravity and I made some attempts at it by studying [10]
and trying to apply it to the Einstein-Maxwell-Chern-Simons system. However, no progress
has been made (yet). Problem 3, as explained in the introduction, appeals to a somewhat more
aesthetic grievance. It’s the only one where I can said to have made any progress though. In
particular, I spent a long time studying the new work of Agostiniani and Mazzieri [13]. I've
had some some success in generalising their work from vacuum spacetimes to those containing
an electromagnetic field. That work is recounted here for the remainder of this chapter.

5.1 Purely electric

The substance of this chapter is dedicated to a new proof of Reissner-Nordstrom uniqueness I
worked on for a large part of the first year of my PhD. Rather than start with full Einstein-
Maxwell system, I started by adding only a purely electric field, i.e. one where ¢, x F' = 0.

5.1.1 Background material

Chapter 2| contained many general results, most of which I'll call upon again in this chapter.
However, I will also need some background material specific to the Einstein-Maxwell system -
I’ll start the chapter by presenting that.

Definition 5.1 (Running assumptions). Until section I'll assume the spacetime, (M, g),
satisfies the following properties:

o M isn dimensional.

o M is time orientable.
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o (M,g) is asymptotically flat.

e (M, q) is static, with the Killing vector field making (M, g) static called k°.

o d(kk,) # 0 whenever k%k, = 0.
e The event horizon is non-empty and connected.
e The matter action is electromagnetic, i.e. S = —u%ﬂfF“bFab\/—g d"z for a closed 2-

form, F.

e [ is invariant under k%, i.e. L, F = 0.

F' is purely electric - or equivalently the magnetic component vanishes, 1 * F' = 0.

(M, g) is globally hyperbolic.

e The mass and charge parameters, m and q, satz'sf m > 2C|q|, where C' = An=3)

n—2 °

The equations of motion for the Einstein-Maxwell system are well known and straightforward
to derive. They are the Einstein equation,

1
Ry, = 2F’aCF’bc - —ZgabFCchd7 (51)
n J—

and the Maxwell equation,
V' = 0. (5.2)

Lemma 5.2. Under the assumptions of definition |5.1, F = dy A dt, for some function, 1,
that does not depend on t.

Note that this lemma also serves to define 1.

Proof. First, I assumed Ly F = 0, to make F' compatible with the stationary nature of the
problem.

.0 =kP0,F,, + F,,0,k" + F,,0,k" (5.3)

= 0,F,, as k= 0/0t in adapted coordinates. (5.4)

Until section 5.2} I have also assumed the magnetic components, B = ¢ F', vanish. In adapted
coordinates, this says

0 = €povr-pin—sk” F*7 = Covppr-pin_s I = €0ijpur-wppns F™- (5.5)
 Fy =0. (5.6)

The Fy; can be repackaged in the electric components as follows. By definition, they are

E,=—k'Fyy = —(14F),. (5.8)

'The m and ¢ I refer to are actually scaled versions of the electric charge and ADM mass. My exact
definitions are given in definition The key point is that m > 2C|q| is exactly the well known relation that
prevents naked singularities in the Reissner-Nordstrom solution.
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In adapted coordinates, this says
E,=—-k"F,, = —Fy, = Ey=0and E; = F. (5.9)

Then, by Cartan’s magic formula,
dE =d(—wF) = =L F + ,dF =0+ 0= 0. (5.10)

The electric field is thus a closed 1-form. In definition [5.1} I have made all the assumptions
required to apply the topological censorship results of [22, 21] and thereby conclude the domain
of outer communication is simply connected.

.. The first homology class of the domain of outer communication is also zero.

S.dE =0 = FE = dy, for some function, .

From equation [5.9] ¢» does not depend on ¢t. Equation [5.9] also implies Fq = ;1.

Finally equation then says F' = —0;(1)dt A da® = dy A dt. O

I'm now ready to write the equations of motion in terms of ¢, h and S.

Theorem 5.3. The equations of motion are

SOWs = >V () VP (), (5.11)
0=v" (%vww) and (5.12)
m _ 1 ogmgm C? ook M= 2DC oy o |
Ry =gVi Vi S+ (n_B)Sghka () VEE () (n_3>SQVi (V)V;7 (), (5.13)
where C' = —2(7;1__23).

Proof. Let’s start with the Einstein equation. First, every component involves

a i 2 04 2 2 ;

FFyy = 2FFy = — 5 h FoFjo = = g h90,(0)0;(¢) = =5V (@) ViV (). (5.14)

Applying lemma [2.4] and equation [5.1} from the 0 — 0 component of Ry, I get

1
SOWS = 2F "y — — 5 Goo FFq (5.15)
— 28y R - L9 (- V) (5.16)
n—2 S
=2V )V W) - VP ) ) (517)
2(n—3 ;
= 2= g0y ) (5.15)
= 2V i)V (). (5.19)
Next, the 0 — ¢ components say
1 a

0=2F"Fy, — — 5 90iF "Fu (5.20)
= 2F,"Fy +2F,’F;; — 0 (5.21)
—0+0, (5.22)
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thus providing no new information. Finally, the ¢ — j components say

R = %Vgh)vyl)s +2E F, — ﬁgsz “Fay (5.23)

= VOVOs +2m0E - Loy (- SV W) (524

- VOVOs 12 (- ) VOV - sV 62)

- 9V - IO + S VTR, (520
Meanwhile, the Maxwell equation says

0=V"F,, (5.27)

= VOFO,, V'E, (5.28)

= 32 VOFOH + W9V Fy, (5.29)

- 8,5F0N 312 F”OOFW + o F”MOFOV + hY0;Fy, — hT",F,, — hT" (5.30)

=0+ ; I oo Fop + = 52 woFoi + 176,00, Fig — W91V, F,, — hijFOM.FZ-O. (5.31)

Using lemma [2.5], T then get

1 ) 1 . . 1
0= §v<h>Z(S)Fw + §v<h>(5)5MOF0i + 96,00, Fy — h7T*, Fyy, — W<

= uo(évW(swim () — VISV () + K90,V () — AT,V ()

VM (S)8.0F0  (5.32)

L omig oy
- 5TV w) (5.33)
— 50 (~ TSV + D) ) (5:34

The final result, —%V(W(S)VE")(@Z)) + O™ (h) = 0, is equivalent to the total derivative,
VM (LV®ig) = 0, by dividing by S. O

The equations of motion are partial differential equations; they must be supplemented by
boundary conditions for any kind of uniqueness analysis. As in the earlier chapters, the problem
is once again formulated on ¥; with inner boundary, H, and outer boundary, S™ 2.

On the outer boundary, the asymptotics are only an extension of definition [2.7]

Definition 5.4 (Asymptotics). To leading order near S™ 2,
q

Y= 3 (5.35)
S=1- 2;’}_3 and (5.36)
m
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The only addition to definition is the assumption on v¢’s decay. The assumption I'm mak-
ing is not rigorously justified here, but it is the standard one used in the literature - e.g. see
[9, 10, 8, [11].

Meanwhile, at the inner boundary, H, S = 0 again as per corollary [2.2.1l For ¢, I have

the following result.

Lemma 5.5. vﬁ% =0 on H.

Proof. From equation|5.11, O® S = %QVgh)(@/))V(h)i(@/J). As explained around lemma[2.9, I can
use Israel coordinates near the event horizon. Then.

OMs = nivPvis (5.38)

_ _pijp()1 :

= —h"T""7 by equation [2.135 (5.39)
11 ~agl

= ——-0sp+ h*"-Kp (5.40)
P2 p p

1 1

=~ 00+ K. (5.41)

Then, since lemma and corollary [2.13.1|say p = £, dsp = 0 and K = 0 on H, it follows
that %Vl(h) (¢)V™i(1)) — 0 as one approaches H. Since S = 0 on H (and & is Riemannian),
Vgh)@/z must be zero on H. O

Corollary 5.5.1. ¢ equals some constant, 1y, on H.

Lemma 5.6. With the boundary conditions assumed, 0 < S < 1. Meanwhile, for 1, if ¢ > 0,
then vy < 1 < 0 and if ¢ < 0, then 0 < ¢ < 1)y. For both S and 1, equalities occur at the
boundaries, H or S"2.

Proof. From equation [5.11]

Oms = %vgmw)v(h)i(m > 0. (5.42)

.. The Hopf maximum principle can be applied, to conclude that S is maximised on the
boundary of 3.

I've already shown S = 0 on the inner boundary, H, and S > 0 elsewhere, so the maximum
must be on S™2.

From equation , S — 17 as one approaches S 2 thereby completely proving the claims
about S.

Meanwhile, for 1, equation says

!
S

.". The Hopf maximum principle can be applied again, this time to conclude 1 must be extrem-
ised on the boundaries of >3;.

From equation [5.35, ¢ = 0 on S7°% and ¢ = 1 on H.

.. One of 0 and ¥y must be the maximum and the other must be the minimum. By equation
[5.35, v < 0 near S2 when ¢ > 0 and ¢ > 0 near S%2 when ¢ < 0.

.. When ¢ > 0, 0 is the maximum and g is the minimum, while 1)y is the maximum and 0 is
the minimum when ¢ < 0.

When ¢ = 0, the maximum and minimum must both be 0, meaning ¥» = 0 and there’s actually
no electric field at all. O

OM(y) — 2V (S)VPi(y) = 0. (5.43)
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In summary, the equations to solve are the following.

Definition 5.7 (Problem summary). The problem studied in this section is summarised by the
equations,

SOWs = >V () VP (), (5.44)
1 .
0=v" (vaw) and (5.45)
1 C? (n —2)C?

pM _ Lotghg 1 0P () TR () ) (o () 5 46
17 sz v] + (n - 3)52 jvk (WV (w) (n o 3)52 vz (w)vj (w>7 ( )
where C' = % and the boundary conditions are S =0 on H, ¥ = 1y (a constant) on H,

Vgh)w =0o0onH,0< S5 <1 everywhere, S — 1 — 50 at S™2 and ¢ — — i at Sz,

5.1.2 Conformal reformulation

One of the key steps underpinning the proof strategy I’ll explain in this chapter is re-writing
the problem in the right variables and with the right conformal transformation.

Definition 5.8 (¢ and z). Define new variables, ¢ and z, to replace S and 1, by

zln(gigz:gzzz) and z=In (Eigi;j:gi) (5.47)

Proof. 1t has to be checked that this change of variables is well-defined. The expressions for
@ and z are manifestly independent, so it all just boils down to checking the arguments of the
logarithms are positive. I will follow some techniques presented in [I1]. Following [I1], define

F.=S8+Cy—1. (5.48)
Then, using equations and [5.45]

OWE, =0Ms + cOMy (5.49)

C? C ,
= VW) £ VS VPiIER) (550

o, = Com i _ Clo®nomi C o qyo i

S OWE 5 VIR (F) VYY) = = ViR () VIV () £ S ViR (S) VI ()
C .

F VW) (VI(8) £ V(W) (5.51)
= 0. (5.52)

This PDE for Fy is of the form which the Hopf maximum principle applies to.
.. Fy is extremised on the boundary of ¥;.
At the S"72 boundary, the asymptotics in definition mean that

iC(— a )—1:—w. (5.53)

Tn—3 2rn—3

Fir—1-—
* 2rn—3

Since I'm assuming m > 2C|q|, it follows that F. — 0~ at S7 2.
Meanwhile, the other boundary is at H.
Since H = {S = 0}, Vgh)S is a normal to S that points into ;. Then, since VY% =0 on H,

VISV (Fe)l = T (S) VO (S) by = 5 > 0. (5.54)
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.. Fl is not maximised on H.

Since F} has to be maximised on a boundary, that boundary must be S72.

Since Fy — 0~ there, it follows that Fy = 5 4+ Cy — 1 < 0 everywhere on Y; itself.

LS <1FCY.

Since S > 0, this inequality implies S? < (1 F Cv¥)? < (1FCv¥)? - S5? > 0.

.. z is well-defined.

Meanwhile, Fly < 0 can also be written as 1 — S > £(C%.

Since the RHS has both + & — and S < 1, the inequality implies (1 — S)? > C*y?.

.. is also well defined. O

Lemma 5.9. In terms of the new variables, the old variables are

B sinh(p/2) B sinh(z/2)
~ cosh(y/2) + cosh(z/2) and Y = cosh(¢/2) + cosh(z/2)’ (5:55)
Proof. Observe that
coth(z/2) = & s 1 (5.56)
(1+Cz/1) + 1
8&{; e (5.57)
(1-Cy)2-5?
 (1+Cy)* - 52 +(1—Cy)* —
(1402 = 82— (1—Cy)? + 52 (5.58)
_ 14+ CQwQ
e (5.59)
Then, from the definition of ¢,
C(14+85)2 -2
¢ = sy (5.60)
214+ 8)-1-C*? + 57
C21-9)-1-C%?+ 52 (5.61)
_ 1+.8—Cvcoth(z/2)
~ 1-S—Ctcoth(z/2) (562)
2.1+ S = Cipeoth(z/2) = e? — Se? — Cpe? coth(z/2). (5.63)
S0=5(14¢€%)+ (1 —e?) + Ctpcoth(z/2)(e? — 1). (5.64)
.8 = tanh(p/2)(1 — C coth(z/2)). (5.65)
Substituting this back into equation I get
tanh®(¢/2)(1 — C coth(z/2))? = 1 + C*)? — 20 coth(z/2). (5.66)
: 200 coth(2/2) () _ tanh?(p/2) coth?(2/2))C20°. (5.67)

- cosh?(p/2) a cosh?(p/2)
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2 coth(z/2) \/4coth2(z/2) . 4(1—tanh?(p/2) coth?(z/2))
cosh?(/2) cosh?(¢/2) cosh?(p/2)

L Oy =" 5(1 — tanh?(¢/2) coth?(z/2)) (5.68)

coth(z/2) + \/cothQ(z/Z) — cosh?(p/2) + sinh®(¢/2) coth?(z/2)

B cosh?(/2) — sinh?(¢/2) coth?(z/2) (5.69)
B coth(z/2) £+ \/coshQ(go/Q)(cothz(z/Q) - 1) (5.70)
~ cosh®(¢/2) — sinh?(p/2) coth?(z/2) '
| coth(s/) = SRET
~ cosh®(/2) — sinh®(p/2) coth?(z/2) (5.71)
_ sinh(z/2)(cosh(z/2) & cosh(y/2)) ' (5.72)
cosh?(p/2) sinh?(2/2) — sinh?(¢/2) cosh?(z/2)
The denominator simplifies as
cosh?(p/2) sinh?(2/2) — sinh?(¢/2) cosh?(z/2)
= cosh®(¢/2)(cosh?(z/2) — 1) — (cosh?(/2) — 1) cosh?(z/2) (5.73)
= cosh?(z/2) — cosh?(yp/2) (5.74)
= (cosh(z/2) + cosh(p/2))(cosh(z/2) — cosh(p/2)). (5.75)
Substituting this back up,
B sinh(z/2)
Y= cosh(z/2) F cosh(p/2) (5.76)
From the asymptotics - see definition -of Sand ¢, p = 00, S = 1— 57 and ¥ — — -5
near spatial infinity.
(e Cp2 s
-n (e e) 570)
(1—Cq/r"3)? — (1 —m/2r"=3)?
(1= s 1)
S n (z;—ggg) . (5.79)

.. z is negative when the electric charge is positive.
Hence, to get ¢ — —¢/r" ™3 < 0 in equation when ¢ > 0, I need to pick the + in F, since
cosh(y/2) dominates in the denominator.

. B sinh(z/2)
O = cosh(z/2) + cosh(p/2) (580)
Substituting this back into equation I get
S — tanh(p/2) (1 ~ coth(z/2) (:/i;)h(fﬁ iih - /2>> (5.81)
_ tanh(p/2)(cosh(y/2) + cosh(z/2) — cosh(z/2)) (5.82)
cosh(p/2) + cosh(z/2) ’
B sinh(¢/2)
~ cosh(y/2) + cosh(z/2)’ (583)
which completes the proof. O
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Definition 5.10 (Conformal scaling, 2'). Define a conformally scaled metric, k' = Q*h, where

B 2 cosh(z/2) 1/(n-3)
0= (cosh(z/2) + COSh(gp/Q)) ' (5.84)

Note that cosh(z) > 1 means (2 is manifestly smooth and non-zero.

Lemma 5.11. In terms of the old variables,

Q= (1-5%+C%)/n=3), (5.85)
Proof. By lemma[5.9]
1— 8%+ C%?
B sinh(¢/2) 2 N sinh(z/2) 2 (5.86)
cosh(p/2) + cosh(z/2) cosh(p/2) 4 cosh(z/2) '
_ cosh®(p/2) + cosh?(2/2) + 2 cosh(p/2) cosh(z/2) — sinh*(p/2) + sinh*(z/2) (5.87)
B (cosh(p/2) + cosh(z/2))? '
1+ cosh®(z/2) + 2 cosh(i/2) cosh(z/2) + cosh®(z/2) — 1 (5.88)
B (cosh(p/2) + cosh(z/2))2 ‘
2 cosh(z/2)
= 5.89
cosh(z/2) + cosh(p/2)’ (5:89)
which matches equation [5.84] U
Theorem 5.12. In terms of ¢, z and I, equations and [5.45 are equivalent to
/ 1 / Y ]_ / N
0 = 2 tanh(2/2) V" (9) V" (2) + 5 coth(p/2) V] () V"V (2) and (5.90)
/ 1 / i 1 / N
O®)z = 5 coth(cp/Q)VZ(-h o) V™i(2) + 5 tanh(z/Q)VEh J(2)V*(2), (5.91)
Proof. The proof is so tedious and uninsightful I have relegated it to appendix [A] O
5.1.3 Uniqueness proof
Theorem 5.13. z is a constant.
Proof. First observe that
/ 1
('h ) (h)i
! (sinh(gp/2)cosh(z/2)V Z)
1 / cosh(y/2) % y
— (), _ AT (UL
sinh(¢/2) cosh(z/2) ‘ 2sinh®(¢/2) cosh(z/2) (?) =)
inh(z/2 / N
T OIS (5.92)
2sinh(p/2) cosh”(z/2)
=0 by equation [5.91] (5.93)
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Hence, when I integrate this total derivative across >, I get

/ 1 N
0= [ v vz ) av’ 5.94
/Et " \sinh(p/2) cosh(z/2) ‘ (5.54)
1 iy 1
/3&2 " sinh(y/2) cosh(z/2) (2) ) " sinh(y/2) cosh(z/2)
by Stokes’ theorem, where n; is the appropriate normal for each integral. Note that my sign
convention in equation means n; points towards infinity in f gn—2 and n; points into the

VHi(z)dA" (5.95)

domain of outer communication in f% Also note that since ¢ = 0 on H, the 2nd surface
integral should be seen as

1

oy (h")i P /' .
‘sinh(y/2) Cosh(z/Q)V (2)dA (5.96)

lim
po—0

{e=¢0}
The domain of integration, {¢ = ¢p}, is a regular hypersurface since dg # 0 on the horizon (I
am only considering non-extremal black holes) and only ¢ infinitesimally close to 0 matters
in taking the limit. Likewise, the first surface integral should be interpreted as

1
li i
rto0 gn—2 " sinh(p/2) cosh(z/2)

vi(z) dA’ (5.97)

and the radius-r spheres are defined by ¥; being an asymptotically flat end.

. m; o< (dr); in the 1st surface integral. The requirement that h/“n;n; = 1 determines the
proportionality constant.

Use the almost Cartesian coordinates, z; (I will always leave the x; indices down by convention),
that arise from >; being an asymptotically flat end.

. (dr); o< z; and thus n; o ;.

By lemma and definition [5.7]

2 2 2 1/(n—3)
Q=(1-52-CxHYen=3 (1 - (1 L) g ) L . (5.98)

~9m=3)  ,2(n-3) r
2/ (n=3)
) i l/(n-3)

r2

From here, I can now determine the asymptotic behaviour of ¢ and z at S 2,

m 2 CQQQ
(1+85)* - C%?* — (1+1_W> ~ sy (5.101)
m 2 CQqQ m2 — 402q2
(1 - S)2 . CQwQ N (1 — 1= W) — TQ(’VL—?)) — 47*2(”—3) (5102)
- sinh(p/2) — %(ewﬂ — e#/?) (5.103)
2 (1—29)2—C?y? (14+5)2 — C%? '
1 16
. (\/m2——402q2rz(n_3) _ 0) (5.105)
2
_ n-s (5.106)

r
1 1
) — vm? —4C2%¢2. (5.107)

k sinh(p/2 2rn=3
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Similarly, for z I get the following.

Cq\° m \2 m—2Cq
2 2
(1+Cp)? — S% = (1 - TM) - (1 - 27"”*3> -5 (5.108)
Cyq 2 m \2 m+2Cq
2 2
(1—Cy)?—S% = <1 + ﬁ) - (1 - an_3> - (5.109)
—9
CL2 = ln <:+—2€Z) = Z1, Say- (5110)

While z takes the constant value, z1, at infinity, what I need for equation is V(h')i(z).

2014+ Cp)VMy —25VMS 20(1 + Cp)VIy + 25V 5

o) (L) — 5.111
v ) [+ o~ 2 - Cop & (5111)
. 2rv=3 ((n—3)Cq (n—3)m\ z
m — 2Cq rn=2 rn=2 r
2rv=3 ((n—3)Cq (n—3)m\ z;
— 5.112
+ m + ch < 7””72 + 7""72 r ( )
(n—3)z; (n—3)x;
—_ = + N (5.113)
= 0. (5.114)
Vgh/)(z) — x;f, for some function, f, that's O(1/r%). (5.115)
Putting the different parts together, the integrand goes as
1 " m1/(n=3) 1 r?
: AVAUDLISATIEN : /m2 — 402q2 ;
" sinh(¢/2) cosh(z/2) (=) iz gV 1 cosh(zp/2) m1/(n=3) fz
(5.116)
= 0(1/r"?), (5.117)
which goes to zero as r — oo.
1 "
R i vHi(z)dA =0 5.118
rooo g2 " sinh(¢/2) cosh(z/2) () ( )
because in the i’ metric, S has finite area,
Algna = 1" 0, Q"2 (5.119)
= =D/ =3y, (5.120)
where w,,_ is the area of a unit radius S 2.
Hence, by equation [5.95
1 "
i Vi) dA" = 0. 5.121
/Hn sinh(¢/2) cosh(z/2) () ( )

1 and S are both constants on H though - namely 1y and 0 - meaning z is also a constant,

1—|—C’¢0>

e (5.122)

z]H:zoz2ln(
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Hence, I can conclude

1 "y
R v{ () A =0. 12
[Hnlsinh(gp/Q)v (2)d 0 (5.123)

This result is quite useful because of the next divergence I'll work with. Observe that

/ 1 AW 1 / h 2 / A%
o) < )v(h )zz) - Ok, — Mvg’ﬂ(@)v(h )i(2) (5.124)
S111

" \sinh(p/2 (¢/2) 2sinh*(/2)
- ;;%((Z/QQ))HVW)ZHQ by equation [5.91} (5.125)
where || - || denotes the natural norm with respect to h'.
/E %Hv(h’&uzdw
- /2 v (mvw’)iz) v’ (5.126)
) /5&2 " Sinh(lw/ VA /H”imv(h'”(@dfl’. (5.127)

The H integral is zero by equation [5.123, The S™ % integral is zero by equations [5.110] and
bL.II8

tanh(z/2) oy 2000
: — dV’' = 0. A2
./Et 2sinh(gp/2)||v z|[*dV' =0 (5.128)

Since the integrand has definite sign at all times, the integral being zero implies ||V z|[? = 0
and thus V"2 = 0.

)

..z 1s a constant. U
Corollary 5.13.1. O™y = 0.
Proof. z being a constant means Vgh/)(z) = 0 in equation m U

Corollary 5.13.2. ¢ s fully determined in terms of S. In particular,
0=1-5%+ "yt o2 (5.129)
q

Proof. By equation [5.110] and theorem [5.13

m — 2Cq
=In{— ). 1
z n(m+20q) (5.130)
By definition [5.47] it follows that
m — 2Cq (14 Cy)?* — 52
1 131
(m—|—20q> n((1—0¢)2—52 (5.131)

—20q  (1+Cyp)? -2

_ 132
<:>m+20q (1—CupE—5° (5.132)
= m — 20my + mC?*Y* —mS? — 2Cq + 4C?*qp — 2C3qp* + 2CqS?
=m + 20myp + mC?*yY* —mS? +2Cq + 4C*qy + 2C3qp* — 2CqS? (5.133)
= 0=4Cma + 4Cq + 4C3q* — 40 ¢S? (5.134)
— 0= %w+1+02¢2—52. (5.135)
O
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Note that corollary holds in all dimensions, n > 4. Unlike previous work on this or
similar problems - e.g. see [11, [§] and references therein - I did not have to appeal to the
positive energy theorem to derive the the relationship between the electric potential, ¢/, and
the lapse, S. As far as I know, for n > 5, this is the first time the positive energy theorem has
not been required to establish this relationship.

Having deduced z to be a constant, the conformal transformation of equation [5.46| is greatly
simplified.

Theorem 5.14. In terms of ¢, z and I/, equation[5.46 is equivalent to

wy _ 1 (") (R') (h") (R')
(M) _ 2 coth(w/2) VP vt - :
R’L] 2 co (90/ )V’L V] (SO) 4(n _ 3) VZ (gp)vj (SO)
1 / ’
——— W VI () V(). 1
Proof. The proof is still tedious and uninsightful, so I've placed it in appendix [B] O

Note that despite the presence of the source-free electric field, the system of PDEs to solve
- equation [5.136| & corollary 5.13.1| with ¢ = 0 on H & ¢ = oo at S 2 - are exactly the

same as the one studied in [I3] for the vacuum case. The rest of the uniqueness proof then
works similarlyf] to [13]. I highlight the salient steps below. One of the novelties of [13] is their
method of detecting spherical symmetry in the solutions. I confirm the same method works
in the present scenario. While I focus below only on the modifications relevant to the black
hole uniqueness problem, one could also follow the methods of [I3] to generalise the Willmore-
type inequalities and other results of [13] to the static bounded potentials arising from the
Einstein-Maxwell system.

Lemma 5.15. If Vgh/)vg»h/)go =0, then (M, g) is isometric to the Reissner-Nordstrom solution.

Proof. The key ideas of the proof are from [14] [13]. First observe that VMg, = o implies
i i ¥
V([T 2) = T (V) (0) Vi () = 29IV ()T i () = 0. (5.137)

J

IV || s a constant.

201+ 8) VM5 — 202V "y 201 - 5)VIMS 4 202V My

(h")
\VA = 5.138
P (1+5)2 — C2)? (1—S)2—C%)? (5.138)
1 ’ ’ 87“2(”73) ’ ’
= (1+9)v"s — 2wy + R Te T (1= 9vMs+ c2pvy)
(5.139)
by equations [5.101} and [5.102]
As summarised in definition , S —1— 50 and ¥ = — -5,
S+ S =2 (5.140)
m
1-— e — 141
S — Syt (5.141)
/ -3
v (n%T)lmx and (5.142)
/ -3
VI = —(nrnl)qxi- (5.143)

2The proof is not quite identical because the presence of the extra field, 7, changes some of the derivatives,
and can change some of the asymptotics.
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To leading order, equation [5.139| then says

2(n—3) N _

(h) 8r m (n—3)m 5> ¢ (n—3)q

Vil 4C2¢> (an—s Sy RS e S (5.144)
2(n—3

- 228 )f”i- (5.145)

r2
From equation [5.99| I then get

7"2

n—3) 2(n-—3) 4(n — 3)?
=

51]2(

m2(n—3) r

R 2 _ grije(h) (h')
IVl |* = IV (0) V5 (0) — (5.146)

VW] = 25255 at Sn2.
LIV ]| = % everywhere.
As this is non-zero everywhere, I can use ¢ as a local coordinate, essentially by the implicit
function theorem.
Let {z}",_} be local coordinates on a particular constant ¢ surface.
Sode = VE ) is normal to that hypersurface.
Extend z* off that hypersurface by keeping z* constant along flows of (d).
That way only ¢ changes along flows of (dy)?, meaning (dy)® o< (9/0p)°.
*. There are no dy-dz# cross terms in the metric.
From the value of [|[V®*)¢||, I can then conclude that
2/ (n=3)

for some invertible 7, ;. Then,
0=v"v =900 - T v o= "

in the (¢, ") coordinates.

Choose (i,j) = (A, B).

(5.148)

Ji

' 1., ~2(n — 3 ~
(5.149)
) ~/
h = mdgp ® dp + | {p=pyy for any ¢q. (5.150)
Choose ¢y — oo. Then, B — m2/ (=3 g, > by equation m Hence,
m2/(n_3)
W=-—————dp®d 2= g s 5.151
The metric of the physical spacetime - which is what I'm actually interested in - is then
g=-S*dt@dt+h (5.152)
= —S%dt @ dt + ﬁh’ (5.153)
2/(n—3) m2/(n—3)
= St @dt+ —————dp @ dp + —————ggu-s. 5.154
@t + P ®de T s (5.154)

By equation [5.84] theorem [5.9 and theorem [5.13] S and Q2 only depend on ¢.

*. The metric in equation is spherically symmetric. Since ||[V*)¢|| # 0, the area-radius
function, » = m*("=3) /Q, is non-constant.

*. By the version of Birkhoff’s theorem applicable here, (M, g) is isometric to the Reissner-
Nordstrom solution. O
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The logical next step after this lemma is to prove that vg"')vg“(@) = 0 is actually true.

Lemma 5.16. Let R"™) be the Ricci scalar of H in the ' metric and let

' At (5.155)
T -G+ G T |
Then,
()7 (W) ] |2 , — 2)K"
VNI e /R(h,mdA/_MAf . (5.156)
v, sinh(p/2) " 4(n - 3)

Proof. First observe that «’ is the analogue of the surface gravity in the A’ and ¢ variables. In
particular, since V™ =0 and S =0 on H,

VM @)V ()4

1

_(20+9V"s — 202V Py 21— VIS + 202V | 1
- (1+9)2 — C%)? (1-8)2 — C%)? RS
L (20+ S)VIig — 202y iy, ) 2(1 — S)VWig + 202V Wiy (5.157)
(14 8)2 — C2y)? (1—5)2 — %2 . .
16V (S)VWi(S) |y 1 (5.158)
L=C25 (14O |
16x2
= = Co) + O 199
_ 2 (5.160)
Next, observe that
(W) 1 Wi (7 (H) |2
VO (i V)
_ov (1 Gwigmig o)
2V — o7 Q)V VI ()V] (go)) (5.161)
_ SO/ GG 00 ()i () T () 4 — 2 GGG ()7 )
sinh?(p/2) * Y sinh(p/2) ’
2 7 /
W) () 2 162
_ _ COsMDI2) G () G ()T () 4 — [ O[T ()9 ()
sinh?(p/2) " Y sinh(p/2)" * ’
2 ’ /
W) () 2
T a1V Vel by corollary 5.13.1 (5.163)
cosh(p/2) 2

+ = [V Wy (5.164)
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Then, by theorem

(') 1 (W)i (h'), 112
il e N )

- —%W'W”<so>v<h'>i<so>v<h’>ﬂ'<so> + 7 IV Vel

b (5ot ) - LT T

g OV ) TV ) (5.165)
_ smh(zgp/z)”v(hl)v(h/)@”z' (5.166)

Thus, by Stokes’ theorem,

2 ! !/
= (A )7 (h), 112 /
/zt sy VY AV

1 AYS ’ 1 "\, /
- R v M ol12Vd A — R v (") |12 !
/5302 nlsinh(go/2) VIRV pl|F)dA /Hnlsinh(go/Z) VIRV ] |7)dA". (5.167)

On H, by equation [5.160 n; = %V(h/)(go).

T 2V () V() T ()
. A Wi (11T |12V A — i Vg A 1
e VTP = [ Cemha A (5169

Meanwhile at "2, V") (|[V®)p|2) is O(1/r) by equation [5.146] n; = ™22 7. by equation

r2

5.100} h}; = w&j by equation |5.99] the area of S™2 is finite by equation|5.120{and ¢ = oo.

1 .
. ) ()i M) ol12)d A" = 0. 5.169
/Sm L /Q)V (IIV™e|1?) (5.169)

Now, equation says
’ ’ h' h' Y] i
IVl / ViV @) VW) V()
5 sinh(p/2) 8 # sinh(/2)

By the Gauss-Codacci equations, R"-")_ the Ricci scalar of H, is

dA', (5.170)

RM = R 9 RMnind 4 k"2 — g ", (5.171)

B -
where Ki(j ) is H’s extrinsic curvature.
Upon a conformal transformation, the extrinsic curvature transforms as [15]

K = QK + ni(hi; = ning) V¥ (In(Q). (5.172)

v

By corollary |2.13.1}, Kgl ) is zer.
Meanwhile, equation |A.20{ with z constant and ¢ = 0 on H means V")*(In(Q)) = 0 on H too.
Ki(;”) =0on H.

S RUH = R g g (5.173)

, 2 / N AV
_ Ry _ ERE?)VUL () Vi (). (5.174)

3Corollary [2.13.1) only says K4p = 0, but in the Israel coordinates used there, Ko; = 0 automatically, so
the whole tensor is indeed zero.
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By :[quation 5.136| and corollary [5.13.1, R") = %vgh/)(w)v<h’>i(¢), which equals (Z(;i)g;
on H.
Also from equation [5.136, RV ®i(0)v#i(p) = 3 COth((,O/Q)VEh/)V(h/)(gD)V(h/)i(QD)V(hl)j((p).

v J

B 1 (2 M A CON A CO NI A (O ()
. = (5.175)
sinh(p/2) Cosh(g0/2)
- R — R04) 5.176
cosh <p/2 ( )
K2 n — 2)k> /
= — R 5.177
oh(72) < in—3) (5177)
Substituting this back into equation [5.170] and noting that ¢ = 0 on H,
h’ 2 o 2
<, smh(gp/Z) u 4(n — 3)
. 2
= K / ROy — (LZ2RT ) (5.179)
H 4(n —3)
which is the claimed identity. U
Corollary 5.16.1. If fH MdA < n 2)“ A, then the spacetime is isometric to Reissner-

Nordstrom.

Proof. The LHS of equation [5.156|is > 0, but if the assumption of the corollary is true, the
RHS would be < 0.

. . . ||v(h )y (k') |2 .

. Equation [5.156| can only hold if fz T@/Jd\/’ 0. / /

Since the integrand is non-negative and continuous, it must be that ||[V*)V®*) |2 = 0.
TV, g,

)

The result then follows from lemma [5.15] O

The inability to actually do the integral, fH R M)A’ in higher dimensions is a shortcoming of
[13]’s method that I was not able to ameliorate. However, like [13], I can rephrase the inequality

on fH R A" in a potentially more useful form and I can eliminate the issue entirely when
n = 4.

Lemma 5.17. The mass parameter, m, satisfies both

1 A’ A (n—=3)/(n—2)
m < / R®H) A" and m > , (5.180)
Wn—a \l (n—=2)(n—3) Jy Wn—2

where wy,,_y is the area of a unit S™ 2.

Proof. First I'll prove the analogue of the Smarr relation in the variables deployed here. By
corollary [5.13.1, O®)¢y = 0.

_.‘0:/ 0" ()dV” (5.181)
p

:/ niV(h/)i(go)dA’—/ n; VWi ()d A’ (5.182)
852 H
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From equation [5.160, n; = %Vgh,)gp on H.

N 1 / AV
/ n; V" (p)d A = / — V() Vi (p)dA" = / KdA = KA. (5.183)
H H R H
For the other surface integral, equations [5.100}, [5.99| and [5.145| say

/ n VPV (o) d A’
Sn—2

ml/(n—3) r2 7’2(77‘_3) m2/(n—3) n—2 .
:/Sn_2 r2 ”’“”l'mz/(rhz)(SJ 2 i (T) " dwy (5.184)

=2m(n — 3)wy_2. (5.185)

Hence, the new Smarr relation is

KA =2m(n — 3)w,_a. (5.186)
Then, by equation |5.156]
, — 2)K"?
< (WH) g4 — (n A 1
0 /R e (5.187)
' — A" (2m(n — 3w, 2\’
/ RWHJA — ("(n _)3) ( m(n A,?’)“’" 2) by equation [5.186] (5.188)
m < A /Rh' A, (5.189)
T wpe | (m=2)(n —

The other inequality requires a more scenic tour.
First observe that since ") = 0 now,

(W) 1
Vi (smh«o/z)
1

= () (W) ( )y Wi (oY (W) 1 W), (|4
= oy | 2Vi Y — = coth(p/2 . 1
sinh(p/2) < Vi V(@) V@) VI () — 5 coth(p/2)[[V s0||> (5.190)

Hence, by Stokes’ theorem, for any g such that {¢ = ¢o} is a regular set,

||v<h’>so\|2v<h’>ao)

1 1 ) N - N s 1 ,
FENCROBWEY QV V( VWi ()W) () — = coth(p/2)]||VH) 4) dv’
/{@@0} smh(<p/2) ( () () () 5 (¢/2)]] ©l|

n;

IVl PV )dA’—/{ [Vl PV (p)ad’. (5.191)

- /S" 2 81nh(<,0/2) =0} sinh(¢/2)

The domains of integration are valid, as follows. View ¢ as a surjective function,

¢ : M — [0,00). By Sard’s theorem, the set of regular values in [0,00) is dense. Thus,
although ¢g cannot be chosen to be any number in [0, 00), it can be chosen arbitrarily close to
any desired number in [0, 00), which suffices for my purposes.

The normal to {p = ¢o} is n; = Vgh/)go, SO

1
/
IV gl|

/ || PV i) d A = / MM. (5.192)
{p=w0} smh(cp/Q) {p=w0} Slnh((p/?)
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The integral at infinity is the same as equation , except that there is a sinh(p/2) = co
suppression in the integrand’s denominator and the ||[V")¢||? in the numerator takes a finite
value by equation [5.146

.. The integral at infinity is zero.

Hence we can define a new function, ®(pg) as

By = [ (IVplfan (5.198)
{¥=wo}
1
= —sinh 2 / —
(0/2) (¢>00} sinh(¢/2)

’ ’ N Yy ]_ ’ /
« (299IAATIHTII) - G ootV ) v (5190

The coarea formula allows the volume integral to be re-written as an integral over constant ¢
surface integralsﬂ It says

b 1
D(pg) = —sinh(p 2/ / 7 -
(i) (/2 | ) Tl smn(p/2)

/ / AW AV ]_ /
x (WEh VI )V () V() — 5 coth(i0/2) |V )wll4> dA'dr  (5.195)
, * (" cosh(7/2)
— sinh 2 — P
sinh(io/ )/% (QSinhz(’l‘/Q) (7)

[ TIEVav
ey VO GlTsin(p/2)

dA’) dr. (5.196)

Then, by the fundamental theorem of calculus and the product rule,
1 > (" cosh(7/2)
o’ = — cosh 2 ———0
(20) = g oshien/2) | (mh% ()
o[ TIEVav
fo=r} ||V sinh(p/2)
(W) (h") i )i
ViUV (@) V)V ()
IV") ]| sinh(p/2)

cosh(po/2)
2sinh?(py/2)

dA'> dr — sinh(pg/2) (o)

+ 2sinh(go/2) / dA (5.197)

{p=wo}

= %coth(tpo/2)@(¢o) - %COth(SOO/m(I)(@o)

19 / VIV (o) Vi () ()
(=0} [V g]]
o TR
{o=p0) IVMg]]

From the exact same logic that went into deriving equation [5.170, it follows that this last
integral can be re-written as

dA’ (5.198)

dA’. (5.199)

(5.200)

TG 2
' (pg) = —2sinh(pg/2 / ! _ dv’
( 0) ( 0/ ) (o300} smh(gp/Q)

<0. (5.201)

4Again, the Sard’s theorem argument means the expression can be made sense of even though not every
constant ¢ surface may be regular.
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o P(p1) > P(p2) whenever ¢ < @s.
. ®(0) > P(o0).
Using equations [5.160} [5.146| and [5.120], it follows that

®(0) :/ [V p||3d A’ :/ IV p||3dA” = kB A" and
{¥=0} H

(n—3)°

! ’ 8
_ (R'), 1139 A7 _ () 1133 A" (n—2)/(n—3)
0) = [ IVWran = [ I9TPan = T s

RBA > 8(n = 3)Pm (8,

Using equation [5.186, this inequality says

8m3(n — 3)3(wn_2)
A

3
A/ 2 S(n o 3)3m(n—5)/(n—3)wn_2

ot ) (n=3)/(n—2)

Wn—2

<:>m2(

This is exactly the second inequality claimed.

Corollary 5.17.1. If
/ R(h’,H)dA/ < (TL . 2)(n _ 3)A/(n—4)/(n—2) (Wn—2)2/(n_2)7
H

then the spacetime is isometric to Reissner-Nordstrom.

Proof. The assumption implies that

! A / RO“04 A
wWna \l (n—2)(n—3) Jy

< 1 \/(n — 21)4(,71 3 (n — 2)(n — 3)A/=1/(1=2) (1, _,)2/(n=2)

Wn—2
1

Wn—2

4\ 9/ (2)
N (Wn—Q ) ‘

.. Both inequalities in lemma [5.17] must actually be equalities.

(A/2(n—3)/(n—2) (wn_Q)Z/(n—2))l/2

(')

(5.202)

(5.203)

(5.204)

(5.205)

(5.206)

(5.207)

(5.208)
(5.209)

(5.210)

From the proof of lemma |5.17] equality occurs if and only if Vgh/)vj ¢ = 0 everywhere; the

latter condition implies the metric is isometric to Reissner-Nordstrom by lemma [5.15]

Theorem 5.18. When n = 4, the solution is isometric to Reissner-Nordstrom.

Proof. When n = 4, the diagnostic of corollary |5.17.1| is fH RWHd A < 8.
Since I'm assuming the event horizon is connected and H is 2D when n = 4,

/ RWHAA = dny(H)
H

by the Gauss-Bonnet theorem.
The Euler characteristic of a closed 2-surface is at most 2, so one indeed gets
J,, RWHdA < 8.
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5.2 With magnetic fields

In this section I'll now drop the assumption in definition that 1p x FF = 0, i.e. Fj; is now
allowed to have magnetic components as well.

Lemma 5.19. The electromagnetic field is F = di A dt + 5F;;da’ Adad, for some ¢ and Fy;
such that Oyp = 0 and O,F;; = 0.

Proof. The proof of lemma [5.2| carries through identically except that ¢ x F' = 0 cannot be
used to set Fj; to zero. O

Theorem 5.20. The equations of motion are now

2
SOMS = 2™ ()w i) + & S FuF?, (5.212)
n —
0=V"I(SEy), (5.213)
0= F; VWig, (5.214)
0=0pFy = Vi Fiy, (5.215)
0=v" (%v“‘)iw) and (5.216)
) _ L omom C? ooty (= 2C% o
RZ] - sz v] S + (n _ 3)52 h'Ljvk; (w)v (w) (n o 3)52 vz (w)vj (w>
+2F "y, — ﬁhijzf’fﬂ,, (5.217)
where C' = %

Proof. T will follow the logic of theorem [5.3] and borrow its calculations liberally. This time,

2
H

Applying lemma and equation [5.1}, from the 0 — 0 component of R,,, I get

F®Fy, = 2F°Fy + FUF;; = VWi )V () + FIF,. (5.218)

1
SOMS = 2F, " Fy, — 5 gooF 4 F (5.219)
: 1 2 o, 3
=25 o = 5 (=5 (‘?V“”w)v,@(w) + FF) (5.220)
/”L —

2
= C’QV(h)i(w)Vgh) (¢) + borrowing from the previous calculation.  (5.221)

n J—

Next, the 0 — ¢ components say
1

0=2F"Fy — — 5 goiF* Fy, (5.222)
= 2F,’F;; — 0 (5.223)
= 2V F; = F; V™ (y) =o0. (5.224)
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Lastly, the ¢ — j components say

1 1
Rg'l) - gvgh)vﬁ-h)s +2F"Fj, - n_9 29ijFabFab (5.225)
1 1
= VIS 4 28 Fo 4+ 28, Py — —hy (—§v<h )V (@) + FF)
(5.226)
Lomom o M=2)C% oy o % )y h
=-V.'vV'S - ~— -V, VvV ——h;;V \ARL
S 1 i (TL—3)52 1 (¢) 7 (¢)+<n_3)82 JVk (¢) W)
1
+ 2F7;ijk - —thijlel borrowing from the previous calculation. (5.227)
n —
Meanwhile, the Maxwell equation says
0=V"F, (5.228)
= VOFOM +V'F, (5.229)
= S2 vOF’O,u + h‘l V Eu (5230)
1 v 1 iJ TV T
1 v ]' % )TV T
=0+ o0 Fup + 5L oFou + W90, Fyy = WLV Fyyy = Ty (5.232)
Using lemma [2.5], T then get
1 , 1 g
0=<VW(S)Fy + V™ (S)duFoi + h70;Fyy — hT*, Fyyy — h9TY  Fy. (5.233)

S S

Noting Fkoj = (, it’s seen that when p = 0, one gets the exact same equation as in theorem

earlier, so the = 0 case again says V( ( (Rigy) = 0.
For the p =1 case, I get

1 . ) ) )
0= §v<h>ﬂ(S)Fﬁ + h*Op Fy; — WFTY By — WPTY F, (5.234)
1 , ‘ ‘
= §v<h>ﬂ(S)F + W gy — W™ By — WPT™ Fy by lemma (5.235)
1
=35V Wi (S)Fy; + VI, (5.236)
- 0=VWI(S)Ey + SVMWIE, = VWI(SE). (5.237)
Finally, dF =0 = 0 =d(dy Adt+ L Fyda’ Adad) = 0y Fy = Vi Fiy = 0. O

Next, I once again need boundary conditions.

S =0 on H for the same reasons as before.

The steps that build to proving vﬁ% = 0 on H are unaffected by the presence of the magnetic
field, except during the proof of corollary . Instead of M) S = %QVE’” (1)VMi()), this time
I have OM S = %th’(w)v@)i(w) + -5 F;;F'7. However, because S = 0 on H, the extra term
makes no difference and the same reasoning can be applied again.

As for the outer boundary, S” 2 T once again assume the asymptotics of definition . Fi; will
also be assumed to decay to zero at S™ 2, but the details of the decay will not be important
for what follows.

Note that since the boundary conditions are the same, the conformal transformations of section
5.1.2| are all still well-defined, for the same reasons as before.

Finally, since —2-F;;F'V > 0 and equation is unchanged upon introducing Fj;, the proof
of lemma still works analogously.
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Definition 5.21 (Problem summary). The problem studied in this section is summarised by
the equations,

2

SOMS = 2™ ()w i) + S F Y, (5.238)
0=V™I(SEy), (5.239)
0= F; VWig, (5.240)
1 )
0=v" (EV("W) and (5.241)
) _ Lohg® c? () () \ o (K (n=2)C% oy, o)
Ry = gvi V7S + mhijvk (w)V( ) (V) — (n = 3)57 Vi (W) V7 ()
1
+2F,FFy, — mhijF’lek,, (5.242)
where C' = % and the boundary conditions are S =0 on H, ¥ = 1y (a constant) on H,

VE’% =0onH,0< S5 <1 everywhere, S — 1 — 57 at S"2 and ¢ — —rnq,g at S"2.

5.21 n=4

When n = 4, the fact that the Hodge dual of a 2-form is again a 2-form can be leveraged to
very quickly redeploy the work of the previous sections.

Definition 5.22 (Electric and magnetic 1-forms). Define the electric and magnetic 1-form
components of F by E, = —k°Fy, and B, = k" (xF)p,.

Lemma 5.23. F =dy and B = advy for some function, 1) and constant, a.

Proof. The proof that £ = dv is unchanged from the corresponding reasoning in lemma [5.2]
The rest is based off proposition 9.8 in [15].
k A dk = 0 because static requires k* to be hypersurface orthogonal.

0 =d(x(k AdE)) = —** d(x(k A dE)). (5.243)
-0 =dl(k A dk). (5.244)

Switching to abstract indices and using that £ is Killing, this last equation says

0 = V(koVike + kpVeka + ke Voks) (5.245)
= V(ka) Ve + ko VeV ke 4+ V() Veko + VOV kg + VE(ke) Vaky + ke VoV Ky, (5.246)
= V(ka)Vike — ko VoV ky — Vi (k9)V kg + ky VoV kg 4+ 0 + kR, Ky (5.247)
= —k R kg + kyR™, kq (5.248)
= ko Rock® — kyRock®. (5.249)

With the energy momentum tensor considered here, R,, = 2F, “Fj. — % G FUF .
1 1
o0 = koke (2dech - 55bCFdeFde) — kyk, (2FadFCd - §5acheFde> (5.250)
1 1
= 2k k FyqF? — ékaka”chc — 2kpk Fog e + §kbkaF”chc (5.251)
= 2kok FypqF — 2kyk Foq . (5.252)
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Then, observe that

(X(EAB))g = %acdabECBd (5.253)
— —igcdabkjeFeck?fgghdegh (5.254)
= g(sg[cahaafb] ke ek Fyy, (5.255)
_ % (67,898 + 67,07, 8% -+ 67,6%0% ) ke Pk (5.256)
= %(kbdechm + kokgF*“Foy + kokgFFy.) (5.257)
= 2 (ohaF ™oy + hohaFF) (5.258)
= 0 by equation [5.252] (5.259)

EANB=0 <= FEFxB <= FE =aB for some function, a. It remains to be shown that a
is a constant.
To that end, I'll first note that B is also a closed form because

dB = (14 F) (5.260)

by Cartan’s magic formula. In this last line, dxF" = 0 is Maxwell’s equation and since k* = 9/0t
& everything is time independent, L x F' = 0, x F' = 0. Then,

dEF =0 = 0= (adB) =da A B. (5.262)

.dax Bx E.
I'll need a few more obscure identities before the denouement.
Let N = k%,. When adapted coordinates are valid, N = —S?. From k A dk = 0,

0 = kaVike + kyV ko + keV ok, (5.263)
20 = kg Vike + k°kyV ko + NV k. (5.264)
1
Vak‘b = —N(k‘ckavbkc + k’ckbvck‘a). (5265)
Using this, I get
Ve (L1E,) = L VY(N)E, + —V°E (5.266)
N a - N2 a N a .
2 b ca 1 ba
= 2k Valko) ke = < Va(kp ™) (5.267)
2 1
= mkzbva(k:b)kchm — NFb“Vakb — 0 by Maxwell’s equation (5.268)
2 2 .
= mkbva(kb)kcFC“ + mFbakaakac by equation [5.265 (5.269)
—0. (5.270)
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Similarly, for B,

ve <%Ba) - —%va(mBa + %VGBQ (5.271)
= _%B%bvakb - %va (Kpe“™ F.) (5.272)
= —%B“kbvakb + %checdbavakb as dF =0 = ¢“V, F,=0 (5.273)
_ _% B ey — % ek ok, by equation [5.265 (5.274)
_o. (5.275)

Putting these last two identities together,

0= V" (%E) (5.276)
_ ye (% Bg) (5.277)
_ % BV, (a). (5.278)

2 1 Vaa # 0, then V,a = da is both parallel and perpendicular to B.

This is only possible if V,a is null.

Then B, must be null too.

However, theorem says k® is timelike in the domain of outer communication and so

k*B, = 3ecapaF 'k k® = 0 would imply B, is spacelike.

Hence, it must be that V,a = 0 to begin with. U

Note that when E = 0, it still holds that B = d¢, for some function, ¢, because of topological
censorship and the dB = 0 result in the proof. In that case, I can rename ¢ as ayy for my

favourite non-zero constant, a. The next theorem also works fine when F = 0, except that
instead of /1 + a2, one would just get a.

Theorem 5.24. The problem considered in this section - i.e. definition [5.21| - reduces to the
one previously considered - i.e. definition - but with ¢ replaced by /1 + a24.

Proof. The boundary conditions in definition [5.7] and are the same, so it only remains to
check that the equations of motion transform as claimed.
By definition, B, = k" (*xF),, = (*F)ou-

. By =0 and
1 1 . .

B = (xF)oi = §<€WOz‘FW = §5jk0iij = gagl,zwk (5.279)

1
o By = gsﬁj,iB’f (5.280)
= %sg?,zvm)k(zﬁ) by lemma [5.23| (5.281)

Then, equation [5.238 becomes

S2 q? g

SOMS = VP (@) VW (@) + T men VORIV () (5.282)
= (14 a)V" @)V (), (5.283)



which is equation with ¢ — V1 + a?.
Next, equation [5.239|is identically satisfied because

vMi(SF;) = V(h”(aa )y (h)k ) (5.284)
—agl vy Mk, (5.285)
=0 as VWIVWhy, — yWkg My, for a scalar. (5.286)

Likewise, equation [5.240| is also identically satisfied because

Fy V™I () = Gefl V@) vMi(y) = 0. (5.287)

Equation [5.241] is the same as equation and equation [5.242 now reads

RY = 59OV + by P - 2V WVPw)

) S 92 ij 92 J
20>
+ ? zklv (w)gjkmv(h)m(w) _ 2_52th klmv (w)gklnv(h)n<w) (5.288)
1 2

= VIS 4 O () VO <w>——v<h><w>v<h><w>

gVi Vi gzvi WYy
S T ()i, — bV ) VO ) (5.25)
~ Lyiyig 4 L hijv,ih’www”“(w) ZCIOWVIW.  (5.20)
which is equation with ¢ — V1 + a2 O

Corollary 5.24.1. All the results of the previous section carry over, except one now gets the
Reissner-Nordstrom solution with both electric charge, q, and magnetic charge, p = aq.

Hence, the uniqueness proof is complete in the n = 4 case.

5.2.2 n>4

The method of [I3] that I've generalised here works somewhat less satisfyingly with magnetic
fields when n > 4. It’s known from the positive energy theorem based proof in [I1] that when
n > 4, Fj; = 0, i.e. magnetic fields are not possible in higher dimensional static, vacuum,
Einstein-Maxwell systems. Proving that result with the method in this paper is only possible
after assuming ¢ # 0 and the auxiliary inequality, [5.292] stated below. In some sense, it is
not surprising an auxiliary inequality like inequality is required in this method. After
all, even without the Maxwell field, the proof in [I3] relies on assuming inequality when
n > 4. Thus, it stands to reason that generalising to the Einstein-Maxwell system may require
assuming further inequalities between the constants in the solution; it just happens that such
additional inequalities are not required when purely electric fields are considered. But first, I'll
need one generalisation of theorem to account for magnetic fields.

Lemma 5.25. With the magnetic field, instead of equation|5.91), one has
’ 1 / N\; 1 / N -
0%(2) = 5 coth(p/2) V(" () V" (2) + 5 tanh(2/2) V" (2) V' (2)

2 .
+ n—fzm sinh® (¢ /2) YR "I Fy Fy. (5.291)
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Proof. This is still fairly tedious, so I've presented the proof in appendix [C] O
Theorem 5.26. If ¢ # 0 and

1— 2,/,2
KA < —Mq(n — 3)wn—2, (5.292)
21o
then Fi; = 0.
Proof. First observe that
(h") 1 (h')i
Vi (sinh(w/Q) (:osh(z/2)V (2>>
1 (h) cosh(y/2) V@(h’) ((p)v(h’)i(z)

sinh(¢/2) cosh(z/2) H 2sinh?(p/2) cosh(z/2)

B sinh(z/2) o)
sinh(¢/2) cosh®(z/2) '

_ 200%sinh(p/2)Y

(2) V() (5.293)

= W*RIE Fyy using 1 5.25 5.294
(n —2) cosh(2/2) ;Fry using lemma ( )
2502 tanh(2/2) . ... -

— nafIQ(Z/ )hlzkhmlEijl. (5295)

Then, by Stokes’ theorem,
250 tanh(2/2) s 1 N
h”khlﬂﬂ FoLdV = / ; v(h )i dA’
/Ez n—2 Ik sn2 " sinh(y/2) cosh(z/2) ()

1
a /an sinh(y/2) cosh(z/2)
The boundary conditions for .S and v - thus also ¢ and z - are unchanged by introducing the

magnetic field. Hence, equation [5.118| still holds. Likewise, z takes the constant value, zj, as
before, on H.

. / 2592 tanh(Z/Z) h/ikh/leijldvl _
pI

Vvi()dA. (5.296)

1 1
cosh(z/2) /Hnisinh(gp/Q)

Vi(2)dA. (5.297)

n—2

The integral on the RHS is evaluated as follows.
Equation is unchanged upon introducing the magnetic field.
Hence, the derivation of equation in appendix [A] still holds. It says

2(1 + cosh(p/2) cosh(z/2)) _ tanh(z/2)

' by D) = 2simh(z/2)000(p) — SV )V (2)
_( cosh(z/2) 1 cosh(yp/2) () i,
<smh2<<,a/2> ooz sinh2(90/2)) Vi P VEE). (5.298)
Observe that dividing by 2 cosh(z/2) gives
0= (sinh(gp/Q)lcosh(z/Q) + COth(SO/Q)) D(hl)(’z) - tanh(z/Z)D(h/)(gp)
sinh(z/2) () y
" Semh(p/2) ez V)
_1 1 1 cosh(p/2) () i,
2 (Sinhz(@/@ " eosl?(/2) st (g/2) cosh(z/2)> Vi (@VIEE) o (5.299)

= v ((sinh(¢/2)1COSh(Z/ 2

+ coth(go/Q)) vi(z) — tanh(z/2)V(h/)i(g0)) . (5.300)
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Then, by Stokes’ theorem,

= (R L co (")i(2) — tanh(z ()i !
0 /V ((sinh«o/mcosh<z/2>+ th“”/”)V (2) — tanh(z/2)V “‘”) fv |
5.301

B /sgo—Q " ((smh(@/g)lcosh(z Tyt Coth(w/Q)) VMi(z) - tanh(z/Q)V(h/)i(Sp)) A’

+ coth(g0/2)> vi(z) — tanh(z/Q)V(h/)i(go)> dA’.
(5.302)

/H”Z’ <<sinh<w/2>1cosh<z/2>

As before, the boundary conditions mean z takes the constant values, zop on H and 2; at S7 2.
Likewise, ¢ = 0 on H and ¢ = oo at S72.
Again, V") (0)V#)i(p) = k7.

/H n; ((sinh v /2>1cosh ) —i—coth(g0/2)) VHi(2) —tanh(z/Q)V(h/)i(go)> dA’

14 cosh(z/2) / 1 (Wi ,
~ cosh(z/2) ansinh(gp/Q)v (2)dA

— tanh(zo/2 V"M (o) vV (p)a A’ (5.303)

1
. VI @) veis(p)

1+ cosh(z/2) / 1 i / o
= . (2 A _ h 2 A . . 4
cosh(z/2) Hnlsinh(gp/g)v (2)d tanh(zo/2)k (5.304)

Meanwhile, for the integral at infinity, the asymptotics are the same as without the magnetic

field, so equations [5.115] [5.100], [5.120], [5.99] [5.118] and [5.185] still hold. Hence,
1 " N
i th(p/2) | Vi (2) — tanh(z/2) V" () ) dA’
/5&2” ((sinh(<p/2) cosn(z/2) T oothle/ )) VIA(z) — tanh(z/2) VT (p)

=0+ / n; Vi (2)dA’ — tanh(z /2) / n; Vi (p)d A’ (5.305)
552 St ?
= / - 54 mt z;fr;dA" — tanh(21/2)2m(n — 3)w,_» (5.306)
gn m2/(n—3) r2 [ n
= —2m(n — 3)w,_2 tanh(z;/2). (5.307)

Putting both integrals together, I get

1+ cosh(zo/2 1 N
0 = —2m(n — 3)w_s tanh(zy /2) — T 0Sh0/2) / ni— V() d A’
4 sinh

cosh(zo/2) (#/2)
+ tanh(zq/2)k" A’ (5.308)
1 N
R v () !
— /ansinh(gp/Q)v (z)dA
~sinh(z0/2) cosh(zo/2)
= T cosh(a0/2) kKA —2m(n — 3)w,_o tanh(z;/2) T+ cosh(z0/2)" (5.309)
From equation [5.122)]
1140 1-=Ci _ 140
cosh(zy/2) = 5 (1 ~ + 1+C¢0) =1 and (5.310)
, L [(14+C¢y 1-Cio) 20y
sinh(zp/2) = 5 (1 “Cuy 1 +C¢o) i (5.311)
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_sih(z/2)  20%
"1+ cosh(z/2) 1—C23+1+C23
cosh(z/2) 1+ C8 L
TFoosh(z0/2)  1—Clt1+cz a0 +C V)- (5.313)

= Cp and (5.312)

Likewise, from equation [5.110

20q_1

-1 2
tanh(z;/2) = ¢ er;gq ﬁ (5.314)
G R
Substituting back into equation [5.309] gives
/ ni;V(h/)i(z)dAl = Cor’ A" — 2m(n — 3)w,_o _2 (1 +C%3)  (5.315)
y  sinh(p/2) m ) 2 0
= O (o’ A"+ 2q(n — 3)wn_o(1 + C*Y})) (5.316)

4K
¢ <w° (1— C2R)(1 + C2) /9]

+2¢(n — 3)w, _o(1 + C*Y7) | using equation f.155 (5.317)

QT;;QA

4k 212\ (n—2)/(n—3)
(o e L €0
+2q(n — 3)w,_o(1 + owg)) (5.318)
=20(1+ C*7) (2 : —I@W q(n — 3)wn2) : (5.319)

Substituting this result back into equation says

/ 2502 tanh(z/2) W Wy Fad V' = — 2C(1 4+ C*3) ( 2K A,
p

+q(n— 3)%_2) (5.320)

n—2 cosh(z0/2) \1—C?3
= —2C (26 A + q(n — 3)w,_2(1 — C%3)) (5.321)
1— C*3
= —4O”¢0 (KJA + 2—%(](71 - 3)wn2> . (5322)

First suppose that ¢ > 0. Then, z > 0 and ¥y < 0. Then, inequality [5.292| implies

/ 250% tanh(z/2)
p

— BRI FudV! < 0. (5.323)

Since the integrand on the LHS is non-negative, it must be that A'*h7'F;; Fy,; = 0. Since A’ is
Riemannian, this is equivalent to Fj; = 0.
Likewise, when ¢ < 0, I have z < 0, ¢¥» > 0 and finally

250 tanh(z/2) .0 s
/ anh(=/2) kit g pdv’ > 0. (5.324)
b n—2
Since the integrand is non-positive now, the result is again Fj; = 0. O

Corollary 5.26.1. When the conditions of the theorem hold, the problem reduces to the one
studied in the earlier sections of the paper and thus all the results there apply again.
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Appendix A
Proof of theorem [5.12

In this appendix I'll prove that equations and are equivalent to
/ 1 !/ A 1 ’ N
Oy = 5 tanh(z/Q)VEh )(go)V(h (2) + 5 coth(go/2)V§h )(Z)V(h ){(2) and (A1)

/ 1 / N 1 / N
O®), = 5 coth(p/2) V") () V#i(2) 4+ 5 tanh(z/2)V") (2)V Vi (2). (A.2)

Start with equation 5.45, V" (1v®™iy) = v (Lv®i(Cy)) =0
I'll first need the transformation of the Christoffel symbols.

r® k= §h l(@jhkl + 8khlj - alhjk) (A.3)
1 1% U 1 1

—pi ﬁh/ﬂ(h;laﬂ + h;jakm ) (A-5)

— T 5, VM (In(Q) — 6,V (In(Q) + 1,V (In(Q)). (A.6)

Using this, equation transforms as

0=y (%vw(cw) (A7)

— 9, @hiﬂ'vgh)(cw)) + M Shfkv M () (A.8)

=0, <%92W v§h’)(0w)>

i . / . / / 1 1 ’
(0 = 8,7 (@) = 8V (in(9) + 5,V (In(Q)) g RV (C)

(A.9)

_v“”( ) Q2V(h (In(Q)) V™ (C) (A.10)
_Q2v<’”( ) Q2V(h (In(Q)) VP (Cwp). (A.11)
0=y (%v i(cw)) - S3vi ) (In(Q)) Vi (C). (A12)
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Now I have to actually start computing derivatives. By lemma [5.9]

sinh(z/2)

(h") _ ol
Vi (O = vih <cosh(g0/2) + COSh(Z/2)> (A.13)

1 1
~ (cosh(g/2) + cosh(z/2))2 < cosh(z/2)V{") () (cosh(p/2) + cosh(z/2))
- % sinh(z/2)(sinh(z/2) V" V24 sinh(¢/2)V, go) (A.14)

_ (14 cosh(yp/2) COSh(Z/Q))VEh/)Z — sinh(z/2) sinh(go/Z)Vz(-h,)cp
2(cosh(y/2) + cosh(z/2))?

(A.15)

Lemma says the expression for S is the same as the one for C'v, but with ¢ and 2z swapped,
so I can immediately read off that

(1 + cosh(¢/2) cosh(z/2))V") o — sinh(z/2) sinh(go/2)V§h,)z.

(W) o _
Vi S= 2(cosh(p/2) + cosh(z/2))? (A.16)
Next, using equation [5.84)
Vi (in())
— %vgh')g (A.17)
1 2 cosh(z/2) - (") 2 cosh(z/2)
- n-—3 <Cosh(<p/2) + cosh(z/Q)) Vi (cosh(go/Z) + cosh(z/Q)) (A.18)
= ! sinh(z ™ (2)(cos cosh(z
~ 2(n — 3) cosh(z/2)(cosh(yp/2) + cosh(z/2))( h(z/2)Vi" (2)(cosh(p/2) + cosh(2/2))
- cosh(z/2)(sinh(z/Q)Vgh/)z + sinh(gp/Z)VEh/)go)) (A.19)
_ tanh(z/2) Cosh(gp/Q)Vgh,)z - sinh(gp/Q)VEh/)gp
= 2(n — 3)(cosh(p/2) + cosh(z/2)) (4.20)
The quantities that appear in [A.12] are §v§h')(cw) and "T’?)Vgh/)(ln(ﬂ)). They are
1o _ cosh(p/2) + cosh(z/2)
Vi (CY) sinh(¢/2)
(1 + cosh(p/2) cosh(z/2))V; (), — sinh(z/2) Sinh(gp/Q)Vgh/)gp (A.21)
2(cosh(¢/2) + cosh(z/2)) ’
(s + cosh(p/2) coth(p/2) ) V)2 — sinh(/2) V"
- 2(cosh(p/2) + cosh(z/2)) and (A.22)
n— 3w _ (n —3)cosh(p/2) + cosh(z/2)
S Vi (@) = sinh(p/2)
tanh(z/2) cosh(go/?)vgh/)z - sinh(gp/Q)VEh/)go
2(n — 3)(cosh(p/2) 1 cosh(z/2)) (4.23)
= %tanh(z/?) Coth(go/Q)V(h) - %Vgh/)tp. (A.24)
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The first term in equation is then

no({1 e
) ( <51nh(<p/2) + COSh(Z/Z) COth((,D/Q)) h')i 5 — Slnh(z/Q)V(h’)lsp)

2(cosh(p/2) + cosh(z/2)) (A.25)

= ! cos cosh(z — M (R") (h)i(
2(cosh(p/2) + cosh(z/2))? [( h{,p/2) + cosh( /2))( 251nh2(<p/2)vl () V' (2)
Lo, 4 % sinh(z/2) coth(p/2) V") (2)V*i(z) — —22?2111% 3)2) vV () Vi (2)

* sinh(¢/2)
+ cosh(z/2) coth(p/2)01") 2 %cosh(z/zwi’"”’)(so>v<h’>"<z> - sinh(z/zw’%o)

- (mv( iz + cosh(z/2) coth(p/2) V") 2 — sinh(z/2) V) )

X (% sinh(z/2)V\" V24 %smh(gp/Z)V(h) )1 (A.26)

This expands to the gargantuan messﬂ of

v (gvicn))

a 4(cosh(p/2) }i- cosh(z/2))? [_ COthQ(@/Q}VEh,)(w)V(h/)i(z)
_ cosh(z/2) cosh(p/2) (Wi o ), 2 cosh(z/2)
sinh?(/2) V ( )V (2) + 2 coth(p/2)0 * sinh(¢/2)
smh(zsﬁi(c;jg)(sﬁ/ 2 0) ()90 (2) + cosh(2/2) sinh(z/2) coth(ip/2) V) (:) T 2)
D I A
2 COSh(Sir/li)(;(J/zl; (¢/2) O™ 2 + 2 cosh?(z/2) coth(p/2)0¢
— cosh(z/2) cosh(p/2) V") (p) V() — coshQ(z/mvi.h’)(gp)w’)i(z)
— 2sinh(z/2) cosh(/2)0") o — 2sinh(z/2) cosh(z/2)0" ) — %vgh%z)v(h’m)

— Vgh/)(go)v(h/)i(z) — sinh(z/2) cosh(z/2) COth(gO/Q)Vgh/)(Z)V(h,)i(z)
— cosh(z/2) cosh(p/2) V") (0) V() + sinh® (2/2) VM) () Vi (2)

+ sinh(z/2) sinh(¢/2) V") (0) V() . (A.27)

L Although, as messes go, this expression pales in comparison to some of the equations involved in calculating
RSL ) in terms of ¢, z and h’. Luckily, I didn’t end up actually needing that full expression in this work.
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The other term in equation is
n—3
S
1 ), _ )
=3 (tanh(z/?) coth(¢/2)V,;" 2 =V, (,0)

y (1 + cosh(p/2) cosh(z/2))V)iz — sinh(z/2) sinh(p/2) V" )i

2(cosh(¢/2) + cosh(z/2))?
_ 1 - - (M) ( )i

T e | S/ s/ (V)

sinh(z/2) coshQ(go/Q))

sinh(y/2)

— VI (Vi) (1 + cosh(z/2) cosh(g/2) + COSh(fé :ﬁ (S;r/‘;) G/ 2>> 1 . (A30)

v (In(Q) Vi (Cy) (A.28)

(A.29)

+ VM () vi(z) (tanh(z/2) coth(ip/2) +

Mercifully, putting these expressions together in equation leads to some simplification. In
particular,

cosh(z/2)  cosh(z/2) cosh?(p/2)

0 =20")(2) (coth(@/Q) + + cosh?(z/2) coth(gp/Z))

sinh(y/2) sinh(p/2)
— 20™) () (sinh(z/2) cosh(p/2) + sinh(z/2) cosh(z/2))
M) ()i sinh(z/2) cosh™(/2) cosh(z/2) sinh(z/2) co _ sinh(z/2)
V(w0 (o) (D) oo /2) iz 2ot 2) — S L
— sinh(z/2) cosh(z/2) coth(p/2) — tanh(z/2) coth(p/2) — Slnh(zsﬁl)l(czj};)(@/ﬁ)

+ V") () Vi () (sinh(z/2) sinh(/2) — sinh(z/2) sinh(¢/2))

() Y 9 cosh(p/2) cosh(z/2)  cosh(p/2) cosh(z/2)
# 9 V0()  — cotti(p2) - AR e e

- M — cosh(z/2) cosh(p/2) — cosh?(z/2) — 1 — cosh(z/2) cosh(yp/2) + sinh?(z/2)
sinh*(¢/2)
+ 1+ cosh(z/2) cosh(p/2) + COSh(féjﬁ(S;/lg) (Z/2>) (A.31)
= 20%(:) (coth(p2) + S 4 RS o) cott(/2))

— 20™) () sinh(z/2)(cosh(p/2) + cosh(z/2))

(h/) P (W) P _M — tanh(z CcO
+9090e) (- S ann(o/2) cotne2))

(h") N 9 2 cosh(p/2) cosh(z/2)  cosh?(z/2)
TV V) ( — cothe/2) - sinh?(p/2) a sinh?(p/2)
9 o cosh(y/2) sinh?(z/2)

— cosh(z/2) cosh(p/2) — cosh?®(z/2) 4+ sinh*(z/2) + cosh(2/2) > (A.32)
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The coefficient of each derivative combination simplifies as follows.

cosh(z/2)  cosh(z/2) cosh®(¢/2)

coth(p/2) + sinh(2/2) sinh(5/2) + cosh?(z/2) coth(p/2) (A.33)
= m (cosh(ip/2) + cosh(z/2) + cosh(z/2) cosh®(p/2) + cosh?(z/2) cosh(p/2))
(A.34)
_ 1+ COS}Sli(Ii/(i?/CQO)Sh(Z/m (cosh(p/2) 4 cosh(z/2)) and (A.35)
- % — tanh(z/2) coth(p/2) = —%(cosh(z/?) + cosh(p/2)). (A.36)
The last one is more obscure. Observe that
- C;jlh}f;j; 2;5;2?22/2 ? (cosh?(2/2) + sinh®(5/2) + cosh(ip/2) cosh(z/2)) (A.37)
_ < cosh(p/2) 1 )
cosh(z/2) sinh?(p/2)  sinh®(¢/2)
x (cosh?(z/2) 4 sinh?(p/2) + cosh(/2) cosh(z/2)) (A.38)
~ cosh(p/2) cosh(z/2)  cosh®(z/2)  cosh(ip/2) 9
o sinh?(p/2) B sinh?(p/2)  cosh(z/2) L= coth™(e/2)
cosh(y/2) cosh(z/2)
- sinh?(/2) (A.39)
2 cosh(p/2) cosh(z/2)  cosh?(z/2)  cosh(yp/2) 9
T sinh?(/2) - sinh?(p/2)  cosh(z/2) L= coth™(p/2) (A.40)
_ 2cosh(p/2) cosh(z/2) cosh?(z/2) o cosh(s cosh(yp/2) sinh?(z/2)
B sinh*(p/2) sinh*(p/2) h(io/2) cosh(z/2) + cosh(z/2)
— cosh?(z/2) + sinh?(z/2) — coth?(¢/2). (A.41)
Hence, equation simplifies to
_ 2(1 + cosh(p/2) cosh(z/2)) ) — 9 sinh(s (wy, y  tanh(z/2) (W) (Wi
0 sinh(2/2) O7(z) = 2sinh(2/2)0 (p) sh(p/2) (2) VI (2)
cosh(z/2) 1 cosh(y/2) (h') Wi
B (Sinh2(¢/2) T on(z2) sinhZ(go/Z)) Vi (V). (A42)

This is as far as I can go with equation for now. To complete the proof of theorem [5.12]
I'll need to consider equation as well.
First observe that for any function, f, using equation [A.6|
(h)xz7(h)
= 0.0;f —1™* v g (A.43)
= 0:0;f — (™", = 859" (In() = 6" (In() + WV M @)V f - (Ad4)
_ o)) (h") (h") (h") (h")
=V Vi VNV (In(Q)) + Vi (f)VE (In(€))
= 0V () VR (In(9)). (A.45)
SO0 =PRIV PIV = 2@ f — (n - 3)V (Vi (In(Q))). (A.46)
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Hence, equation [5.44], transforms as
1

OMg = §v§h>(c¢)v<h>i(c¢) (A.A47)
= XOMs = (n-3)V"($)VHi(In(Q))) = %Q?Vﬁh”(c@z))v@’ﬁ(cw (A.48)
= 08 = (n - 3)v"(S)V " (In(Q)) + %VE“(O@V”’”(CW (A.49)

I'll evaluate each of these terms in terms of ¢ and z next. Using equation [A.16| and [A.20}]

(n = 3)v"(5)V" (In())
~(n—3) (1 4 cosh(y/2) cosh(z/2))V£h/)g0 — sinh(z/2) sinh(go/2)vgh/)z
2(cosh(y/2) + cosh(z/2))?
tanh(z/2) cosh(p/2)V")iz — sinh(p/2) V" )ip
2(n — 3)(cosh(p/2) + cosh(z/2))

_ 1 B sinh?(z/2) sinh(y/2) cosh(p/2) ") (o),
4(cosh(p/2) +COSh(Z/2))3{ cosh(z/2) Vi () VERG)

— V(@) V() (sinh(g/2) + cosh(z/2) cosh(p/2) sinh(p/2))
+ V") () V() (tanh(2/2) cosh(p/2) + sinh(z/2) cosh?(/2)

(A.50)

+ sinh(z/2) sinh2(¢/2))] : (A.51)

Using equation [A.15]

SV ()T
(1 + cosh(p/2) cosh(z/2))V\")z — sinh(z/2) sinh(p/2) V")
4sinh(p/2)(cosh(y/2) 4 cosh(z/2))?
x (1 + cosh(gp/2) cosh(z/2))V ")z — sinh(z/2) sinh(p/2) V")) (A.52)
1

- sinh?(z/2) sin (n) (h)i
4(COSh(g0/2)+Cosh(z/2))3[ h*(z/2) sinh(¢/2)V;" () VY ()

+ Vgh/)(z)v(h/)i(z) (sinh(lgo/Q) + 2 cosh(z/2) coth(p/2) + cosh (;ii)(jpo/s;) <90/2>>
— QVEhI)(QD)V(h,)"(z)(sinh(z/Q) + sinh(z/2) cosh(z/2) cosh(gp/2))} : (A.53)
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Lastly, using equation [A.16]
W) q _ o) (1 + cosh(p/2) Cosh(z/2))V — sinh(z/2) smh(g@/?)vghl)z
=V < 2(cosh(p/2 ) + Cosh(z/?)) (A.54)
_sinh(gp/Q)V(h/)i(cp) + sinh(z/2)Vi(2)
2(cosh(p/2) + cosh(z/2))3 /
X (th )(90) + cosh(p/2) cosh(z/2)V; v (p) — sinh(z/2) sinh(ap/Q)VEh )(z))

- 4(cosh(yp/2) i Cosh(z/2)) [2D(h ) + sinh(/2) cosh(z/2) V") (o) Vi)

+ cosh(y/2) sinh(z/2)V,; (90) (W)i(2) + 2 cosh(p/2) cosh(z/2)0" )
— cosh(ip/2) sinh(z/2) V| (@)V(h " (2) = sinh(ip/2) cosh(2/2) V" (2) VW1 (2)

— 2sinh(¢/2) sinh(z/2)0 h)z] (A.55)

-.ag
1

T 2(cosh(p/2) + cosh(z/2))3 (SinhQ(Z/Q) Sinh(@/Q)Vghl)(Z)V(h,)i(z)

+ Vgh/)((p)V(h/)i(z)(sinh(z/Q) + sinh(z/2) cosh(z/2) cosh(p/2) — sinh?(¢/2) sinh(z/2))
+ Vz(h’) () V() (sinh(p/2) + sinh(¢p/2) cosh(p/2) cosh(z/2))>

1
+ 4(cosh(p/2) + cosh(z/2))?
— 2sinh(ip/2) sinh(2/2)0")(2) - sinh(p/2) cosh(z/2) V") (2) Vi (2)

+ sinh(¢/2) cosh(z /2)v§h’>(<p)v<h’>i<gp)] . (A.56)

[ZD(h/)(go)(l + cosh(p/2) cosh(z/2))

Putting these three expressions together, equation says
0 = 20" (¢)(1 + cosh(gp/2) cosh(z/2)) — 2sinh(p/2) sinh(z/2)0"")
— sinh(p/2) cosh(z/Q)Vghl)(z)V(h i(2) + sinh(¢/2) cosh(z/2)V!
! — v (W)i(2) (2 sinh(z
* cosh(p/2) + cosh(z/2) [ Vi () VI )<2 h(z/2)
4 2sinh(z/2) cosh(z/2) cosh(p/2) — 2sinh?(/2) sinh(z/2) 4 tanh(z/2) cosh(p/2)
+ sinh(z/2) cosh?(/2) + sinh(z/2) sinh®(¢/2) — 2sinh(z/2) — 2sinh(z/2) cosh(z/2) cosh(cp/?))

(2)
")V ()

— Vgh,)(go)v(h,)i(gp) <2 sinh(yp/2) + 2sinh(y/2) cosh(yp/2) cosh(z/2) — sinh(y/2)

— cosh(z/2) sinh(p/2) cosh(y¢/2) + sinh?(z/2) sinh(gp/Q))

+ Vgh/)(z)v(h/)i(z) (2 sinh?(z/2) sinh(p/2) + sinh <Z/2)::;E((f//22)) coship/2) _ sinh(lgp/Q)
— 2cosh(z/2) coth(p/2) — cosh (;{12}1)((;/8;) (@/2))} : (A.57)
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-0 = 20" (0)(1 4 cosh(p/2) cosh(z/2)) — 2sinh(yp/2) sinh(z/2)0") (2)
— sinh(ip/2) cosh(z/2) V") (2) V¥ (2) + sinh(p/2) cosh(/2) V(" () V" ()

1 (h") )i . 19 )
+ cosh(p/2) + cosh(z/2) { -V, (@)V( ) (z)( — sinh®(¢/2) sinh(z/2)

+ tanh(z/2) cosh(p/2) + sinh(z/2) cosh?(¢ /2))

— Vgh/)(go)v(h,)i(gp) < sinh(y/2) + sinh(p/2) cosh(p/2) cosh(z/2) + sinh?(z/2) sinh(go/2)>

+ VM) () mi(2) (2 sinh?(z/2) sinh(ip/2) + SR/ 2)::;?1((95//22)) cosh(ip/2) _ Smh(lgo 5
— 2cosh(z/2) coth(p/2) — cosh (;{12}1)((;)/8;) (90/2))] (A.58)

Again, the coefficient of each derivative combination simplifies.

— sinh®(¢/2) sinh(z/2) + tanh(z/2) cosh(/2) + sinh(z/2) cosh?(¢/2) (A.59)
= sinh(z/2) + tanh(z/2) cosh(y¢/2) (A.60)
= tanh(z/2)(cosh(y¢/2) 4 cosh(z/2)) and (A.61)
sinh(g/2) + sinh(p/2) cosh(y¢/2) cosh(z/2) + sinh?(z/2) sinh(¢/2) (A.62)
= cosh?(z/2) sinh(p/2) + sinh(p/2) cosh(¢/2) cosh(z/2) (A.63)
= sinh(¢/2) cosh(z/2)(cosh(¢/2) + cosh(z/2)). (A.64)
The third one is again more obscure. Observe that
(cosh(p/2) + cosh(z/2)) (Smh(gzéi;:/lg) G/2) _ zﬁil((;g; - Coth(go/Z))
_ cosh(yp/2) sinh(p/2) sinh?(z/2) “in Gnh2(>/2) — cosh(2/2) co B cosh?(z/2)
cosh?(p/2)
" Snh(e/2) cosh(z/2) coth(yp/2) (A.65)
= cosh(p/2) il(jls};f(iéz; sinh’(2/2) + sinh(/2) sinh?(z/2) — 2 cosh(z/2) coth(p/2)
1 + sinh?(2/2) B cosh?(p/2) cosh2(2/2) — sinh?(
_ cosh(yp/2) sinh(p/2) sinh?(z/2)  9eosh(2/2) co B 1
= cosh(2/2) 2 cosh(z/2) coth(p/2) — 2o
B cosh?(p/2) cosh?(z/2) <in Sinh2(s/2) — sinh?(z/2) _ cosh?
o P sinh(p 2)sinh?(2/2) - TR~ coso/2) (AT
_ cosh(yp/2) sinh(yp/2) sinh?(z/2) — 9c0sh(z/2) co B 1
B cosh(z/2) 2 cosh(z/2) coth(i7/2) sinh(¢/2)
B cosh?(p/2) cosh?(z/2) sin k(2
Sinh(/2) + 25sinh(p/2) sinh*(z/2) (A.68)
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which is the coefficient of Vgh/)(z)v(h/ﬁ(z) in equation . Hence, equation simplifies
to
0 = 20" (¢)(1 + cosh(gp/2) cosh(z/2)) — 2sinh(p/2) sinh(z/2)0") ()
— sinh(p/2) cosh(z/2) V" (2) V' (2) + sinh(p/2) cosh(z/2) V") (¢) Vi ()
— tanh(2/2) V(") (¢) V" (2) — sinh(p/2) cosh(2/2) V" () V" ()
sinh(¢/2) sinh?(z/2) B cosh(z/2) o o) (Wi
( cosh(z/2) sinh(y/2) th(gp/Q)) (V) (A.69)
= 20" ()(1 + cosh(p/2) cosh(z/2)) — 2sinh(y/2) sinh(z/2)0") (2)
— tanh(2/2) V") (p) V" (2)

(UL D

— sinh(¢/2) cosh(z/Q)). (A.70)

Hence, I finally get that equation is equivalent to

0 = 20" () (1 + cosh(y/2) cosh(z/2)) — 2sinh(y/2) sinh(z/2)0%")(2)
— tanh(2/2) V") () V" (2)
(W) (T Wi sinh(¢/2) sinh?(z/2) _ cosh(z/2) cosh?(p/2) o
TV RV )( cosh(z/2) sinh(p/2) th(gp/Q)). (A7)

Re-arranging for 0"z, T get

), _ 1
= (sinh(cp/Q) sinh(z/2)

+ %vg’”(z)v(h’ﬂ(z) (tanh(z/Q) — coth(z/2) coth?(/2) —

+ coth(¢/2) coth(z/2)) 0"

cosh(p/2) )
sinh(z/2) sinh?(p/2)

1 ' N
VI (@) Vi(2). (A.72)

~ 2sinh(p/2) cosh(z/2)

Substituting this back into equation gives

2(1 + cosh(p/2) cosh(z/2)) ( 1
sinh(¢/2) sinh(y/2) sinh(z/2)

+ %v§h’>(z)v<h’>i(z) (tanh(z/2) — coth(z/2) coth?(p/2) —

0=

+ coth(p/2) coth(z/Z)) DW)‘P

cosh(p/2) )
sinh(z/2) sinh?(/2)

9 2(1 + cosh(p/2) cosh(z/2))
sinh(¢/2)

1 2(1 + cosh(p/2) cosh(z/2))

" 2sinh(p/2) cosh(z/2) Vi () VMi(z) sinh(g0/2)
, / anh(z/2) (h")
_( cosh(z/2) 1 cosh(p/2) (h') Wi,
(sinhQ(gp/Q) + cosh(z/2) + sinh2(90/2)) V (SO)V (2) (A.73)
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. 0=20%(p) (sinhQ(ap/Q; Sinh(=/2) QCOths(ii{;)(;O/j;WQ) COthQ(ﬁﬁ)é?Z?Q(Z/Q)
. sinh(z/Q))
0 e ¢ e e )
+ V) () Vi) (coth(g0/2) sinh(z/2) — > C"thifﬁg(j;/sg(@/ 2)
- o <§i/11211)((;0/t2h)3(w/2> - sinh(,zizl)lifnf?’)(w/Q)) (A.74)

As has become custom by now, each of these daunting coefficients simplifies significantly.

1 2 coth(z/2) cosh(p/2)  coth®(¢/2) cosh?(z/2) _ sinh(z/2)
sinh?(/2) sinh(z/2) sinh?(p/2) sinh(z/2)
1+ 2 cosh(z/2) cosh(p/2) + cosh?(/2) cosh?(z/2) — sinh?(p/2) sinh?(z/2) (A.75)
sinh?(¢/2) sinh(z/2)
1+ 2 cosh(z/2) cosh(p/2) + cosh?(/2) cosh®(z/2) — (cosh®(¢/2) — 1)(cosh?(z/2) — 1)
sinh?(/2) sinh(z/2)
(A.76)
_ (cosh(g/2) 4 cosh(z/2))?
~ sinh*(p/2)sinh(z/2) (A.77)
1 2 cosh(p/2) N cosh(z/2) 1

sinh?(¢/2) cosh(z/2)  sinh?(p/2)  sinh®*(p/2)  cosh(z/2)
1+ 2cosh(z/2) cosh(z/2) + cosh®(z/2) + sinh*(p/2)
- Sinh2(/2) cosh(z/2) (A.78)
_ (cosh(g/2) 4 cosh(z/2))?
~ sinh®(¢/2) cosh(z/2) and (A.79)
coth(yp/2)sinh(z/2) — QCOthiiﬁg(;O/S; 2/2) _ cosh (:l/th)((;o/t; (£/2)
B cosh(p/2)

sinh(z/2) sinh®(/2)
=3 C:;j};)il/fh z/2)< sinh?(p/2) sinh?(2/2) + 2 cosh(/2) cosh(z/2)

+ cosh?(z/2) cosh?(¢/2) + ) (A.80)
= smh3cg(;jl;§imh 2 ( (cosh?(p/2) — 1)(cosh®(z/2) — 1) + 2 cosh(y/2) cosh(z/2)

+ cosh?(z/2) cosh?(p/2) + ) (A.81)
~ cosh(g/2)(cosh(p/2) + cosh(z/2))?
o sinh®(p/2) sinh(z/2) ' (A.82)
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Hence equation [A.74] says

(cosh(ip/2) + cosh(z/2) iy (eosh(e/2) + cosh(=/2)P .

0 sinh?(/2) sinh(z/2) sinh?(¢/2) cosh(z/2) Vi (P)VEHE)
cosh(p/2)(cosh(p/2) + cosh(z/2))? _m) e

B sinh®(p/2) sinh(z/2) Vit () V() (A.83)

e OMyp = %tanh<z/2)v§h’>(go)v(h’)i(z) + %coth(w/Q)VEh/)(Z)V(h/)i(z), (A.84)

which completes the proof of equation [A.T] Substituting this result back into equation
gives

Ow, — 1 1

2 <sinh(g0/2) smh(z/3) T oothle/2) coth(z/ 2)>

X (tanh(z/Q)VEhl)(go)V(h/)i(z) + coth(g0/2)Vz(-h/)(Z)V(h/)i(z)>

+ %vgh”(z)v(h’)i(z) (tanh(z/Z) — coth(z/2) coth?(p/2) — Smh(;;;?i‘i"n/;)w%)

T2 sinh(gp/2§ cosh(z/2) viP V() (A.85)
SEALRGAIO (sinh(gp/2)1cosh(z/2) +coth(ip/2) - sinh(<p/2)1cosh(z/2)>

+ %vghw)v(h’)i(z) (Sth(C;j};g‘;/fﬁ Tt coth?(/2) coth(z/2) + tanh(z/2)

— coth(=/2) coth(p/2) — — (s(/);l)“ifn/f; - /2)> (A.86)
_ %coth(<p/2)V£h/)(@)V(h/)i(z) + %tanh<z/2)v§h’>(z)vW(z), (A.87)

which proves equation [A.2]
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Appendix B

Proof of theorem 5.1

In this appendix I'll prove that equation [5.46]

m _ L omom % (M) (. v (W) (n—2)C% _ny, \oh)
Ry =35Vi'V; S+mhijvk () V() — (=35 Vi ()ViT (),  (B1)
is equivalent to
wy _ 1 Wyg®) oy _ 1 W) o)
Rij = ZCOth(@/Q)Vi vj (¢) 4(n_3>vz (SO)VJ (¢)
T AR ONA L (B2)

I can assume z is a constant, because this is already proven in the main text before Rg-l) is ever
required in terms of A/, p and z.
From page 42 of [16],

R = R + ”T_?’QQQU + }lQthjQ’“k, where (B.3)
QO = %vg’”vg") (%) — 2h; VM (%) vk (é) and ', = hQ,;. (B.4)
By equation [A.45)]
vy (é) = v (é) £y (é) v In(@)) + v (é) v (In(2))
-9 () Tt (5.5)
=909 (5) - gV @V (@) - v @V (o)
g Vi (@) () (B.6)
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Substituting this back into the €2;; definition, I get
Q*Qy;

_qoumem) (1 4 o) ) 4 o) ()
=4V (5> — gV @V (@) — 5V @V ()

M TPV (n(62) — 2y, 03V ()T (@R (B.7)
_ 109®) 1 ) ) / Wk
= 4Qv"vi (5> — 8V (In(Q)) V") (In(Q)) + 2k, VI (In(Q)) VR (In(Q)).  (B.8)
Q2hiijk
= Qhy Q™ (B.9)
= R} Quh™ (B.10)
= 4Qh;,0" (%) +2(n — 5)h, V) (In(Q) VR (In(Q)). (B.11)

2 - 020, + }lQZhijQ’fk

— (n—3)Qvv) (é) —2(n - 3)V") (In(Q)) V" (In()) + A}, 0" (é)

+ (n — 4RV (In(Q) VR (In()). (B.12)

Substituting this back into equations and [B.1],

/ 1 C? n—2)C?

RS = VIS + o aha T VW) - En - 3>> VWV W)

#n=3)0v90 () = 200 - @) m(e) + 21,00 (5

+ (n — 4RV (In(Q) VR (In(Q)). (B.13)
In the last expression, using equation again,
Mo o _ o) ®) (h") (r') (h") (r")
ViIVS =V VS 4 VI (S)V T (In(Q)) + Vi (S) VT (In(Q))

)

— BV () VAR (In(€)). (B.14)
Meanwhile, I also have,
c* (h (h)k 02 RVl (h')k
n—2)C? n—2
WVEWM’” () = % 2(Cw)v(cw). (B.16)
Putting all these pieces together,
/ 1 / ’ 1 ’ / 1 ’ ’
Ry = ovIV s+ v () v (n(@) + g Vi)V ()
1 / / / ]_ /
_ ghijvéh )(S)V(h )k(ln(Q)) + mhiﬁ(h )(Cw)v(h )k(Cw)
_ =) o o) (1
g COVI(C) + (- 3290 (5

—2(n —3)V{" (In(2)) V" (In(Q)) + Qh,OM) (é)

+ (n — 4RV (n(Q) VR (In(Q)). (B.17)
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All that remains is the unenviable task of evaluating all these derivatives and simplifying the
result. Some of these derivatives have already been calculated in appendix [A] With z constant,
equations [A.15], [A.16] and [A.20] say

' B sinh(¢/2) sinh(z/2)
v§h )(C¢) ~ 2(cosh(p/2) + cosh(z/2))?’ (B.18)
' (1 +cosh(p/2) cosh(z/Q))VEhl)go
vz(h )(S) ~ 2(cosh(y/2) + cosh(z/2))2 and (B.19)
v (In(Q)) = — sinb(o/2), e (B.20)

2(n — 3)(cosh(p/2) + cosh(z/2))
Putting these together with lemma [5.9]

1

Evgh'>(5)v§h')(1n(9)) _ 1 + cosh(y/2) cosh(z/2) ()

4(n — 3)(cosh(p/2) + cosh(z/2))? *

1

’ ’ i h2 2 ’
LV CH I ) = T ®

(cosh(y/2) 4 cosh(z/2))? '
sinh?(p/2) o)
4(n — 3)(cosh(p/2) + cosh(z/2))? *

(@)V{"(p) and  (B.22)

J

(n —3)v" (In()) V") (In(Q)) =

Meanwhile, the 2nd derivative terms are as follows.

%vgh’)vyl”s
cosh(¢/2) + cosh(z/2) () (1 + cosh(p/2) cosh(z/Q))Vgh,)gp
sinh(¢/2) ’ 2(cosh(¢/2) + cosh(z/2))?

_ cosh(p/2) + cosh(z/2) sinh(p/2)V") ¢
sinh(¢/2) 2(cosh(p/2) + cosh(z/2))

’ 4smh<so/2><cosh<io/2> ooy Sinh(e/2) cosh(z/2 V. ()Y ()

1

3 sinh(p/2)(cosh(p/2) + cosh(z/2))

_ cosh?(z/2) — cosh(p/2) cosh(z/2) — QVW)
4(cosh(p/2) + cosh(z/2))? ‘

L~ + cosh(z/2) coth(p/2)

sinh(p/2) (W) (h')
VIV . B.26
2(cosh(p/2) + cosh(z/2)) v ® (B.26)

(B.24)

5 (1 + cosh(p/2) cosh(z/2))V§-hl)go

(1 4 cosh(p/2) cosh(z/2))VEh/)V(~h/)cp (B.25)
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From equation |5.84]

Wyo iy (1
(n —3)Qv"v! )<5)
_ 2 cosh(z/2) V0D cosh(p/2)  1\Y"?
=09 (i s mterm) T )<<—2608h(z/2) +3) (B.27)

_ ( 2 cosh(z/2) ) Y/(n=3)
cosh(p/2) 4 cosh(z/2)

¥ cosh(p/2) 1\ ginh(p/2) o
x VE )(<2 cosh(z/2) i 5) 4 cosh(z/2) V; )90> (B.28)
B 2 cosh(z/2) cosh(p/2) _ % sinh(¢/2) < myom)
~ cosh(p/2) + cosh(z/2) <8(:osh(z/2)V( )(SD)V( o)+ 4cosh(z/2)V( )V (¢ )>
n—4 2 cosh(z/2) ? sinh(p/2) (), - sinh(yp/2) '
n—3 (cosh(gp/Z) + COSh(Z/2)> 4(:osh(z/2)VZ (¥ 4 cosh(z/2) vj (gp) (B-29)
)

~ cosh(p/2) VM (0) VI () + 2sinh(p/2) VIV
B 4(cosh(p/2) + cosh(z/2))
— (n—4)(n —3)V") (In(Q) V") (In(Q)). (B.30)
Corollary says Oy = 0, so it follows that
N1 cosh(p/2) V") () VRE () ¥ :
QO (=) = L — (n— 49V (In(Q)V**(n(Q)). (B.31
(Q) 4(n — 3)(cosh(yp/2) + cosh(z/2)) (n = Vi (@) VT (In()). (B-31)
Substituting all of these expressions back into equation gives
/ 1 / ]_ l ’
RY) = Svf Vs ¢ sz (5)v{) (n(Q)) + gvg.h '($)V"™) (In(Q))
1

_ Eh’v (S)V( (ID(Q)) + ( _ 3)52

(n—2) 4 R') Y R
T —3>52V5 (CHVI(CY) = (n = 3)(n = 2)V;" (In(2)) V" (In(Q))

| cosh(p/2) 9] (@) V" () + 2sinh(p/2) V" Vo
4(cosh(p/2) + cosh(z/2))
, cosh(<p/2)V(h (@) V()

g 4(n — 3)(cosh(go/2) + cosh(z/2)) (B.32)

~ 2(cosh(p/2) + cosh(z/?)) sinh(¢/2)
v () V() )

4(n — 3)(cosh(p/2) + cosh(z/2))? ((” — 3) cosh”(z/2) — (n — 3) cosh(yp/2) cosh(z/2)
—2(n — 3) — 2(1 + cosh(ip/2) cosh(2/2)) — (n — 2) sinh®(2/2) — (n — 2) sinh*(p/2)

+ (n — 3) cosh(p/2)(cosh(p/2) + Cosh(z/Z)))

L V@Y
4(n — 3)(cosh(p/2) + cosh(z/2))?

+ cosh(p/2)(cosh(p/2) + cosh(z/2))> : (B.33)

1,8 (Cop) V()

+ cosh(z/2) coth(¢/2) + sinh(gp/2))

_|_

(1 + cosh(p/2) cosh(z/2) + sinh?(z/2)
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As usual, each of these ghastly derivative coefficients simplifies.

+ cosh(z/2) coth(p/2) + sinh(¢/2)

sinh(¢p/2)
= coth(y/2) (coshggo/Q) + cosh(z/2) + S;;ls}il(f//;))) (B.34)
= coth(p/2)(cosh(y/2) + cosh(z/2)), (B.35)

(n — 3) cosh?(2/2) — (n — 3) cosh(yp/2) cosh(z/2) — 2(n — 3)

— 2(1 + cosh(y/2) cosh(2/2)) — (n — 2) sinh?*(2/2) — (n — 2) sinh*(/2)
+ (n — 3) cosh(y/2)(cosh(p/2) + cosh(z/2))

= (n —2) — cosh?(z/2) — 2(n — 3) — 2 — 2cosh(p/2) cosh(z/2) + (n — 2)

— cosh?(¢/2) (B.36)
= —(cosh(¢/2) + cosh(z/2))* and (B.37)
1 + cosh(p/2) cosh(z/2) + sinh?(z/2) + cosh(y/2)(cosh(p/2) + cosh(z/2))
= cosh?(2/2) + 2 cosh(y/2) cosh(z/2) + cosh?(¢/2) (B.38)
= (cosh(p/2) + cosh(z/2))>. (B.39)

Hence, equation says

/ 1 ’ / ]_ / ’
Ry = 5 coth(p/2) V]V () - 4(n— 3)V§h (9" (@)
1 1 (b)) (W)k

which is what I set out to prove.
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Appendix C

Proof of lemma 5.25

In this appendix, I prove that in the presence of a magnetic field,
(h') 1 (h') (h')i 1 (') (h)i
D™(2) = 5 coth(p/2) Vi () VI (2) + 5 tanh(2/2)ViT () VIT(2)

2 .
+ —0292 sinh? (¢ /2) YR "Ry Fy. (C.1)

Equation [5.45] is unchanged upon introducing the magnetic field.
Hence, the derivation of equation in appendix [A] still holds. It says

0— 2(1 + COSS}ill(lg}zz(/i)/;j())Sh(Z/2>)D(h’)(z) . QSinh(z/2)D(h/)(g0) . Zi?}?((;;;; Vghl)(Z')v(h/)i(2>
~( cosh(z/2) 1 cosh(p/2) () Wi,
(ot e s o9 €3
ey, L + cosh(y/2) cosh(z/2) W), _ 1 (W) ( oW,
e = i 2) sinh (2 /2) Ssnh(p/2) cosh(z2) 1 V)
1 ( coth(z/2) 1 cosh(p/2) (W) Wi,
2 (sinh2(<p/2) cosh(z/2)sinh(z/2)  sinh(z/2) Sinh2(gp/2)) Vi () VP (2).

(C.3)
Also from appendix [A]
SUFRRE O
= L (R cos cosh(z
~ L(cosh(p/2) + cosh(2/2))? {25 ()(1+ cosh(ip/2) cosh(z/2))
— 2sinh(/2) sinh(z/2)0")(2) — tanh(z/2) V") (@) V*(2)
W)y (Wi sinh(p/2) sinh2(z/2) B cosh(z/2) cosh2(¢/2)
VRV )< cosh(z/2) sinh(p/2)

- coth@/z)ﬂ . (C4)
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Hence, equation [5.238 saysﬂ

(h) h)i S i
V) - T (C.5)
= o) e |20 O+ coshe/2) cosh2)

— 2sinh(y/2) sinh(z/2)0%) (2) — tanh(z/2) V") (o) V*(2)

+ VI () v Wiz (Sinh(ié;)l(sir/lg) (2/2) COSh(Zjﬁ(C;jg)W 2) coth(s /2))]
- - ‘i 2FijFij (C.6)
s 0= QD(h’)<¢)(1 + cosh(y/2) cosh(z/2)) — 4Sinh(¢/2)(c((:}fs;§?;2+ cosh(z/2)) FYF;

— 2sinh(p/2) sinh(z/2)0%")(2) — tanh(z/Z)Vgh/)(@)V(h,)i(z)

F )V (ML) BB o)) (c1)

Then, by equation

cosh?(p/2) cosh?(z/2)
sinh(¢/2) sinh(z/2)

/ 1
0=20")(z + 2 coth(¢/2) coth(z/2) +

( )(Sinh(go/Q) sinh(z/Q.)
~ sinh(p/2) sinh(z/Q)) B 4smh(<p/2)(c(o§h_(<g§?2)2+ cosh(z/2))FijFij
o) coth(z/2) 1 cosh(p/2)
Vi (VG <smh2(go/2) cosh(z/2)sinh(z/2) ~ sinh(z/2)sinh?(p/2)
cosh(yp/2) cosh?(z/2)  cosh(p/2) 9 ALl
s1nh(z/2) SlnhQ(go/Z) + sinh(z/2) + coth(z/2) coth”(¢/2) + tanh( /2)>
(z) Wi )< B 1 sinh(y/2) sinh?(z/2)
sinh(¢/2) cosh(z/2) cosh(z/2)
_ cosh(z/2) cosh?(p/2)
sinh(y/2) ) ' (C-8)

The coefficients of each type of derivative term simplify as follows.

cosh?(p/2) cosh?(z/2)
sinh(¢/2) sinh(z/2)

— 2coth(p/2) +

1
sinh(¢/2) sinh(z/2)
— sinh(y/2) sinh(z/2)

_ 142 cosh(g/2) cosh(z/2) + cosh?(/2) cosh?(z/2) — sinh?(p/2) sinh?(z/2) (C.9)
sinh(¢/2) sinh(z/2)

1+ 2cosh(y/2) cosh(z/2) + cosh?(p/2) cosh®(z/2)

+ 2 coth(p/2) coth(z/2) +

1
~ sinh(/2) sinh(z/2)(
— (cosh?(p/2) — 1)(cosh?(z/2) — 1)) (C.10)
_ (cosh(gp/2) 4 cosh(z/2))?
~ sinh(p/2)sinh(z/2) (C.11)

ITo clarify, throughout this section, F/ will mean h**h7'F},; even though other 7,7,k ... indices are often
manifestly raised using the h’ metric.
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, coshi/2)
2)sinh?(¢/2)  sinh(z/2)

coth(z/2) 1 cosh(p/2) cosh(/2) cosh?(z/2)  cosh(yp
sinh?(p/2)  cosh(z/2)sinh(z/2) = sinh(z/2)sinh®(¢/2)  sinh(z/
+ coth(z/2) coth?(¢/2) + tanh(z/2)

cosh(p/2) (cosh(z/Q) sinh®(0/2) + 1 + cosh?(z/2) + sinh?(p/2)

B sinh(z/2) sinh?(p/2) \ cosh(¢/2)  cosh(p/2) cosh(z/2)
sinh?(z/2) sinh?(¢/2)
+ cosh(p/2) cosh(z/2) + cosh(2/2) cosh(p)2) ) (C.12)
B cosh(p/2) cosh( 2/2 cosh?(p/2) — 1 cosh? cosh?(s
~ sinh(z/2) sinh?(p/2) (cosh (p/2) cosh (p/2) cosh(z/2) + cosh™(p/2) + cosh™(2/2)
(cosh?(2/2) — 1)(cosh?(p/2) — 1)
+ cosh(p/2) cosh(z/2) + cosh(2/2) cosh(2) ) (C.13)
B cosh(p/2) cosh(z/2) cosh(z/Z)(coshZ(go/Q) - 1) cosh? cosh2(s
smh (2/2) sinh?(p/2) (cosh 90/2 cosh(y/2) + cosh™(ip/2) + cosh™(2/2)
+ cosh(p/2) cosh(z/?)) (C.14)
~ cosh(p/2)(cosh(p/2) + cosh(z/2))?
B sinh(z/2) sinh?(/2) (C.15)
1 sinh(/2) sinh?*(2/2)  cosh(z/2) cosh®(¢/2)
~ sinh(p/2) cosh(z/2) 2coth(p/2) + cosh(z/2) B sinh(p/2)
_—1-2 cosh(g/2) cosh(z/2) + sinh?(¢/2) sinh?(z/2) — cosh?(z/2) cosh?(¢/2) (C.16)
sinh(p/2) cosh(z/2) ‘
_ (cosh(p/2) + cosh(z/2))?
B sinh(p/2) cosh(z/2) (C-17)
Substituting these results back up, I get
_ o) (s (cosh(p/2) 4 cosh(2/2))*  4sinh(p/2)(cosh(p/2) + cosh(2/2)) ;.
0=20") sinh(y/2) sinh(z/2) (n—2)Q2 FUE
o) Wi, cosh(p/2)(cosh(p/2) + cosh(z/2))?
Vi (DVIHE) sinh(z/2) sinh?(/2)
_ v o, (cosh(p/2) + cosh(z/2))*
Vi HVITE) sinh(¢/2) cosh(z/2) (C.18)
) Ny 2sinh(z/2) sinh?(p/2) i L () i
) = P leosh(p/2) Loz E T+ g coth(@/ DV () V()
+ %tanh(z/2)V§h/)(z)V(h/)i(z) (C.19)
= ZOVS I ity o+ ot (/2) 91 ()T )
+ %tanh(z/Q)VEh/)(z)V(hl)i(z). (C.20)
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Appendix D

Notational conventions

The following symbols typically have the meanings given below.
e M: the spacetime manifold

e 7: the dimension of M

g: the Lorentzian metric on the full spacetime

e k“: static Killing vector field

e 1. a coordinate in a coordinate system where k* = %

e Y. a surface of constant ¢

e h: the metric on a spacelike hypersurface within the full spacetime, typically ¥,
e hor f3: the induced metric on an (n — 2)-dimensional spacelike submanifold

e H or H*: the event horizon

e r: the surface gravity of the event horizon

e 7{: a spacelike cross-section - typically a constant ¢ slice - of the event horizon

2(n—3)
n—2

e (: the domain of outer communication or the constant, , based on context

e V: the covariant derivative associated with g

e V(@: the covariant derivative association with some given metric, a

e ¢: the Levi-Civita tensor corresponding to g

e =(@: the Levi-Civita tensor corresponding to some given metric, a

e .. a symbol to denote “therefore”

e 7*: future and past null infinity

e S"~2: the surface at infinity on an (n — 1)-dimensional asymptotically flat end

® w,_o: the area of a unit radius S"2
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The metric signature of g will always be mostly plusesﬂ
n is always assumed to be at least 4.
a, b, ... will be abstract indices for tensors on M. They will be raised/lowered by g%°/ga.

W, v, ... will run from 0 to n — 1 and be indices for tensors on M in a specific basis. They will
be raised/lowered by ¢"”/g,. .

1, j, ... will tun 1 to n — 1 and be indices for tensors on some spacelike hypersurface, typically
3. They will typically be raised/lowered by h%/h;; or a conformally equivalent metric.

A, B, ... will tun 2 to n — 1 and be indices for tensors on some spacelike (n — 2)-dimensional
surface. They will typically be raised /lowered by hZ /h 4p.

The standard bilinear form on p-forms, o and 3, is («|f3) = %aal,,,%ﬁal‘“ar.
The Hodge dual of a p-form, «, is defined to be (x)a,...q,_, = isbl...bpal...anfpabl'“bp.
The Riemann tensor is defined so that [V,, V,]V¢ = R, V<.

Newton’s constant, GG, and the speed of light, ¢, are both set to 1.

A series of derivatives acts on all terms enclosed in brackets, e.g. Vg, ---V, (AB) means
there are n derivatives, V,,, ..., V,,, acting on the product, AB, with V, acting first and V,,
acting last. I've tried to never write an expression such as V*AV,B, which in principle could
mean V*(A)V,(B) or V*(AV,B).

IThis is the only sensible convention.
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