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Chapter 1

Introduction

Perhaps the oldest uniqueness result in general relativity is the famous Birkhoff theorem, dis-
covered merely a few years after general relativity itself. Birkhoff’s theorem states that the
only spherically symmetric solution of the vacuum Einstein equation is the Schwarzschild so-
lution. All subsequent uniqueness theorems essentially follow the same format - assume some
symmetry and prove the symmetry to be so restrictive that Einstein’s equation has only one
solution.

Despite not being assumed a priori, the Schwarszschild solution possesses the property that it
is static. Naturally, one may wonder if a kind of converse to Birkhoff’s theorem is true. Does
every static, vacuum spacetime have to be spherically symmetric and thus Schwarzschild? If
not, what further assumptions are required? These issues are more interesting when studied in
the context of spacetimes containing black holes and this has been the main topic I’ve explored
in the first year of my PhD. In short, the task is to prove that the class of static, asymptotically
flat black hole spacetimes contains only the Schwarzschild spacetime, or its analogues like the
Reissner-Nordstrom spacetime when matter fields are involved.

More than forty years after Birkhoff’s theorem was established, the static black hole unique-
ness conjecture was resolved in the affirmative by Israel [1]. Although Israel’s proof made some
serious assumptions, most were relaxed soon afterwards [2, 3] and Israel’s work effectively gave
birth to a new industry of black hole uniqueness research - see [4] for a review. Given it all
began with Israel, I spent some time studying Israel’s proof and I’ve re-presented his proof in
full in chapter 3. Probably the simplest and most comprehensive of the early proofs was by
Robinson [3, 4]. Although I studied this proof, I have not included it in this report. Like Israel’s
proof and the others around in the 1960s and 1970s, the proof was built on constructing some
seemingly ad hoc divergence, observing the result to be a sum of squares, integrating using
Stokes’ theorem and then using the vanishing integrand to detect spherical symmetry. Despite
the successes of the early proofs - including their generalisations to accommodate source-free
electromagnetic fields [4] - three main difficulties remained when it came to generalisations.

1. Dealing with disconnected horizons.

2. Integrating the Ricci scalar of a ‘constant time’ slice of the event horizon.

3. Constraining the Riemann tensor of spacelike hypersurfaces given only the Ricci tensor
of those surfaces.

The 2nd and 3rd problems are only issues when one attempts the static uniqueness problem in

2



higher dimensions1, where as the 1st problem arises in all dimensions. All three problems were
simultaneously solved by Bunting and Masood-ul-Alam [5] through an ingenious proof utilising
the positive energy theorem. Their method has been adapted and generalised to several other
scenarios such as higher dimensions and various matter fields - e.g. see [6, 7, 8, 9, 10, 11]. Note
this is not a purely technical exercise. For example, for spacetimes that are merely stationary,
but not static, the existence of black rings means uniqueness doesn’t hold in higher dimensions
[12]. Given the Bunting and Masood-ul-Alam method is the most comprehensive and I gave
a talk on it earlier this year, it would have been remiss of me not to include it in this report.
Chapter 4 is dedicated to the higher dimensional version of Bunting and Masood-ul-Alam’s
proof. As far as I know, this positive energy theorem approach explained in chapter 4 forms
the basis for all static black hole uniqueness theorems not assuming connected event horizons
or set in dimensions higher than four. While very elegant, these proofs are in some sense a
little unsatisfying, because the difficulties of overcoming the aforementioned problems have
been outsourced to the difficulties of proving the positive energy theorem.

I tried for some time in this past year to take up the problem of proving static black hole
uniqueness without recourse to the positive energy theorem. I focused on one particular paper
by Agostiniani and Mazzieri [13] for several months. In [13, 14], the authors found a new way of
detecting spherical symmetry by conformally scaling the problem to an asymptotically cylindri-
cal one. Their paper manages to circumvent the third problem listed above and provides a new
proof of static, vacuum, asymptotically flat, connected black hole uniqueness in 4 dimensions.
For higher dimensions, they are forced to deal with the second problem by assuming a particu-
lar inequality between the constants parameterising the solution and the Ricci scalar’s integral.

I have extended the work of [13] by adding a source-free Maxwell field. Following [13], I
have succeeded in finding a new proof of Reissner-Nordstrom’s uniqueness among 4D, static,
asymptotically flat, connected black holes in the Einstein-Maxwell system. In higher dimen-
sions, I had less success. Initially, I considered a Maxwell field with purely electric components.
In this case, by judicially choosing the variables in which the problem is expressed, I have a
complete proof given the same inequality that’s already assumed in [13]. In the course of
this analysis, I managed to find the electric field fully in terms of the lapse function - as far
as I know this has not been done before in higher dimensions without relying on the posi-
tive energy theorem. When magnetic components are included in higher dimensions, I had
to rely on an additional, auxiliary inequality between the constants parameterising the prob-
lem. In some sense this is not surprising - after all [13] already required one such inequality
in higher dimensions. The full drama of my endeavours on this topic is the subject of chapter 5.

I started the academic year though - as every PhD student does - with background read-
ing. And that’s exactly where I’ll start the main body of this report, in chapter 2.

How to read this report
This report is written with the philosophy that as far as practical, the reader should never have
to put ‘pen to paper’ to verify any equation or claim I make. As such, the report is quite long.
However, I’ve tried to write in a format such that a reader who skips all the proofs should still
be able to follow the story I’m trying to tell. The report is deliberately written in a somewhat
casual style. I never enjoyed reading terse, austere papers that made me want to gouge my eyes
out a la Oedipus Rex and so I tried to avoid that style myself. Only chapter 5 contains any
new results and the absence of detailed citations should not be taken as a claim to originality.

1In 4 dimensions, a constant time slice of the event horizon is 2D, allowing one to use the Gauss-Bonnet
theorem and spacelike hypersurfaces are 3D, meaning the Riemann tensor is determined by the Ricci tensor.
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However, many known results do not have satisfyingly detailed proofs or properly quantified
assumptions stated in the literature. I have sought to fill in such gaps whenever I could and in
many ways it is a more natural reflection of the real experience of the first year in a PhD. On
the whole, I intend this report to a non-exhaustive tour of my work for the past year. Finally,
I would also advise readers to read appendix D as required.
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Chapter 2

Foundational results

I once spent two weeks being inculcated with the philosophy that it pays handsomely to “think
deeply about simple things.” That idea is perhaps the motto underlying this chapter. Here, I
collate many well known results about static spacetimes in a pedagogical style. These results
are almost exclusively taken as assumed knowledge in academic papers and in the later chapters
of this report. While much of the content is based off a book I spent many months studying,
Black Hole Uniqueness Theorems by Markus Heusler [15], I believe it helps to unify results that
are scattered across various books and various chapters of each book. Furthermore, there are
several results - like the no ergoregion theorem and the 4D spherical horizon topology theorem
- which are well known, say from Hawking and Ellis’ seminal monograph [16], but don’t possess
satisfyingly detailed written proofs in the literature. Even for content available in textbooks
like [15], I believe I have filled in many missing steps.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Harvey Reall once told us in a lecture that one of the ironies of general relativity is that it’s
counterintuitive and yet makes perfect sense. An example of this in action is that one of the
central ideas of general relativity is to be coordinate independent, and yet one rarely makes
any progress in practice without choosing the right coordinate system first. Indeed, such is life
in analysing static spacetimes. I’ll start by constructing a coordinate system in the domain
of outer communication, C, that is well adapted to the static geometry. To be clear, I’ll be
adopting the following definition of static.

Definition 2.1 (Static). A spacetime, (M, g), which is asymptotically flat at null infinity is
called static if and only if it possesses a Killing vector field, ka, such that ka is timelike near
I± and ka is hypersurface orthogonal.

Note that the definition relies on having some asymptotics. I will always consider asymptoti-
cally flat spacetimes, so it suffices for me to take this somewhat strict definition.

For any Killing vector field, it’s a standard result that one can define local coordinates such
that the Killing vector field is a coordinate vector field and the metric’s components are inde-
pendent of that coordinate - e.g. see sections C.2 and C.3 of [17]. In the case of ka, the Killing
vector field making (M, g) static, let t be the corresponding local coordinate, i.e. ka = ∂/∂t.
In analysing static uniqueness, most people tacitly assume there is no ergoregion. This is in
fact well known to be true for static spacetimes, but I have yet to find a proof in the literature
that goes into sufficiently satisfying or convincing detail. Hence, I have written my own based
on the results in [16] and [18].

Theorem 2.2 (Carter and Hawking & Ellis). Let (M, g) be an asymptotically flat, static,
spacetime. Let ka denote the Killing vector field making (M, g) static. Assume ∇a(k

bkb) ̸= 0
whenever kaka = 0. Then, (M, g) has no ergoregion.
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Proof. Assume the ergoregion is non-empty, for a contradiction.
Let V = −kaka and let Z = {p ∈M |V = 0 at p}.
∴ Z is a closed set, since any convergent sequence of points in Z has V = 0 at each point and
thus V = 0 at the limit point from kaka’s continuity.
ka is static =⇒ ka is hypersurface orthogonal =⇒ k∧dk = 0, where I’ll also use k to denote
ka when it’s self-evident that the expression only makes sense if k is a 1-form.

0 = k ∧ dk. (2.1)

∴ 0 = ka∇bkc + kb∇cka + kc∇akb (2.2)

= ka∇bkc − kb∇akc + kc∇akb by the Killing equation. (2.3)

∴ ka∇bV − kb∇aV = −ka∇b(k
ckc) + kb∇a(k

ckc) (2.4)

= −2kc(ka∇bkc − kb∇akc) (2.5)

= 2kckc∇akb by equation 2.3 (2.6)

= −2V∇akb. (2.7)

By the hypersurface orthogonality condition, ∃ a function, f , such that ka = −αdf . Let C0 be
a constant f hypersurface.
Let p ∈ Z. Let γ(λ) be a curve in C0 passing through p1 and let T a be γ(λ)’s tangent vector.
Assume I can choose γ(λ) such that dV/dλ ̸= 0 in an open neighbourhood of p within γ(λ)
(i.e. an interval), for a contradiction.

1

2V
ka

dV

dλ
=

1

2V
kaT b∇bV (2.8)

=
1

2V
T b(kb∇aV − 2V∇akb) by equation 2.7 (2.9)

=
1

2V
T bkb∇aV − T b∇akb. (2.10)

T b is tangent to a curve in C0 and ka is normal to C0 by ka = −αdf and C0 being a constant
f surface.
∴ T bkb = 0. Then, upon applying the Killing equation I get

1

2V
ka

dV

dλ
= T b∇bk

a. (2.11)

Since I assumed dV/dλ ̸= 0 in an open interval around p, I can use V itself as the parameter,
λ. This is essentially the inverse function theorem.
∴ 1

2V
ka = T b∇bk

a. The RHS is continuous, but the LHS diverges at p since V = 0 at p.  
This contradiction means dV/dλ = 0 around p for every curve in C0.
∴ C0 ⊆ Z.
However, if V were zero in an open neighbourhood of p, p’s arbitrariness in Z would mean Z
was an open set.
But, Z is also closed, so M ’s connectedness would make Z =M , contradicting V = −kaka > 0
near I±.
∴ V cannot remain zero along directions perpendicular to C0.
∴ The connected component of Z including p is a connected component of C0, say E0.
∴ E0 is a connected null hypersurface (since k is null on E0 and perpendicular to E0).
dV ̸= 0 when V = 0 =⇒ V > 0 on one side of E0 and V < 0 on the other side.
Since the ergoregion is assumed to be non-empty, I can choose p to be outside the event horizon.
∴ The V < 0 side is in the ergoregion’s interior.

1C0 is fixed by the value of f at p.

6



Choose a point, q, just off p in the ergoregion’s interior.
Since q is not inside the black hole, q ∈ J−(I+).
If q /∈ J+(I−), then by definition, q would be inside a white hole region. It’s strange to define
the ergoregion to include white holes and white holes are unphysical anyway, so either way, I
can assume q ∈ J+(I−).
∴ ∃ a future directed causal curve, say s(λ), from I− to I+ passing through q.
E0 being a connected null hypersurface means the outgoing normal to E0 is everywhere future
directed or everywhere past directed (it can’t stay null and flip from one light cone to the other
without passing through zero).
∴ s(λ) can only be future directed while going into the V < 0 region considered here, or only
while leaving it, but not both.  .
This contradicts s(λ) being future directed all the way from I− to I+.
∴ The ergoregion must have been empty. □

Corollary 2.2.1. In a static spacetime with ∇a(k
bkb) ̸= 0 whenever kaka = 0, the event

horizon of a black hole must be a Killing horizon of ka.

Proof. The event horizon is a causal boundary. As such, it must be a null hypersurface, because
all the light cones are tangent to a causal boundary.
Next, let Φt denote flows along ka.
ka is Killing ⇐⇒ (Φt)∗g = g.
∴ Causal structure is unaffected by flows along ka.
∴ Since the event horizon is a causal boundary, it too must be unaffected by flows along ka.
∴ ka is tangent to the event horizon.
∴ ka is null or spacelike, since the event horizon is a null hypersurface2.
The theorem says that in the case considered here, ka is timelike just outside the event horizon.
Thus, by continuity, ka can only become null, not spacelike, on the event horizon, thereby
making the event horizon a Killing horizon of ka. □

Definition 2.3 (Adapted coordinate system). For a static spacetime, the metric in the domain
of outer communication, C, will be written as

g = −S2dt⊗ dt+ h, (2.12)

where h is a metric on the surfaces of constant t (i.e. it only depends on the other n − 1
coordinate 1-forms, dxi), S > 0 and neither S nor h depends on t.

Proof. Theorem 2.2 implies g(k, k) < 0 in C, justifying the coefficient of dt⊗ dt being −S2.
Neither S nor h depending on t follows from ka = ∂/∂t being Killing.
ka is static =⇒ it is hypersurface orthogonal. Let Σ denote the relevant hypersurfaces.
The coordinate, t, is constructed by flowing along ka from Σ and letting (t, xi) be the co-
ordinates of the point reached by flowing a parameter distance, t, from a point with local
coordinates, xi, in Σ.
∴ Σ are constant t surfaces and thus ka ∝ dt.
∴ g0i = 0 and I get the metric in equation 2.12. □

It will help to decompose the Ricci tensor in an analogous way to the metric.

Theorem 2.4. Rtt = S□(h)S and Rij = R
(h)
ij − 1

S
∇(h)
i ∇(h)

j S, where subscript (h)s denote
quantities with respect to the metric on each Σt.

2The argument so far actually applies to any Killing vector in any black hole spacetime.
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Proof. Let {θµ}n−1
µ=0 be an orthonormal basis of 1-forms, with with θ0 = Sdt. Then, the structure

equations imply the following.
dθµ = −ωµν ∧ θν ⇒ dθ0 = d(Sdt) = −ω0

µ ∧ θµ ⇔ 1
S
∇µ(S)dx

µ ∧ θ0 = −ω0
µ ∧ θµ

∇0(S) = ∂t(S) = 0, ω0
0 = 0 by ωµν = −ωνµ and ∇i(S) = ∇hij connection

i (S) = ∂i(S).
Hence, the dθ0 condition reduces to

−ω0
i ∧ θi =

1

S
∇(h)
i (S) dxi ∧ θ0 (2.13)

=
1

S
∇(h,θ)
i (S) θi ∧ θ0 (2.14)

⇐⇒ ω0
i ∧ θi =

1

S
∇(h,θ)
i (S) θ0 ∧ θi (2.15)

where∇(h,θ)
i denotes the connection components with respect to the tetrad, {θi}n−1

i=1 , on constant
t hypersurfaces, (Σt, h).

∴ ω0
i =

1
S
∇(h,θ)
i (S)θ0 + fθi for some function, f .

The other three tetrad exterior derivatives say

dθi = −ωiµ ∧ θµ (2.16)

= −ωi0 ∧ θ0 − ωij ∧ θi (2.17)

= − 1

S
∇(h,θ)
i (S)θ0 ∧ θ0 − fθi ∧ θ0 − ωij ∧ θi (2.18)

= −fθi ∧ θ0 − ωij ∧ θi. (2.19)

Since everything is t independent and there are no t− xi cross terms in the metric, dθi cannot
have a θ0 factor.
∴ f = 0 and dθi = −ωij ∧ θi.
The latter equation is the same as the structure equation on (Σt, h).

∴ By the uniqueness of structure equation solutions, ωij = ω
(h)i

j .

Next, I apply the other structure equation, 1
2
Rµνρσθ

ρ ∧ θσ = dωµν + ωµρ ∧ ωρν .

dω0
i = d

(
1

S
∇(h,θ)
i (S)θ0

)
(2.20)

= d

(
1

S
∇(h,θ)
i (S)

)
∧ θ0 + 1

S
∇(h,θ)
i (S)dθ0 (2.21)

= d

(
1

S
∇(h,θ)
i (S)

)
∧ θ0 − 1

S2
∇(h,θ)
i (S)∇(h,θ)

j (S)θ0 ∧ θj. (2.22)

1
S
∇(h,θ)
i (S) is just a scalar as far the 1st term’s exterior derivative is concerned.

However, from the definition of the covariant derivative, if {eµ}n−1
µ=0 is the inverse tetrad in the

tangent spaces, then

∇(h,θ)
j

(
1

S
∇(h,θ)
i S

)
= e k

j ∂k

(
1

S
∇(h,θ)
i S

)
− (ωki)j

1

S
∇(h,θ)
k (S). (2.23)

∴ ∇(h,θ)
j

(
1

S
∇(h,θ)
i S

)
θj = (dxk)∂k

(
1

S
∇(h,θ)
i S

)
− ωki

1

S
∇(h,θ)
k (S) (2.24)

= d

(
1

S
∇(h,θ)
i S

)
− 1

S
∇(h,θ)
j (S)ωji. (2.25)
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Using this in equation 2.22, I get

dω0
i = ∇(h,θ)

j

(
1

S
∇(h,θ)
i S

)
θj ∧ θ0 + 1

S
∇(h,θ)
j (S)ωji ∧ θ0 −

1

S2
∇(h,θ)
i (S)∇(h,θ)

j (S)θ0 ∧ θj (2.26)

=
1

S
∇(h,θ)
j ∇(h,θ)

i (S)θj ∧ θ0 + 1

S
∇(h,θ)
j (S)ωji ∧ θ0. (2.27)

Inserting this into the structure equation, I get

1

2
R0

iµνθ
µ ∧ θν = dω0

i + ω0
µ ∧ ω

µ
i (2.28)

=
1

S
∇(h,θ)
j ∇(h,θ)

i (S)θj ∧ θ0 + 1

S
∇(h,θ)
j (S)ωji ∧ θ0 + ω0

j ∧ ω
j
i as ω00 = 0 (2.29)

=
1

S
∇(h,θ)
j ∇(h,θ)

i (S)θj ∧ θ0 + 1

S
∇(h,θ)
j (S)ωji ∧ θ0 +

1

S
∇(h,θ)
j (S)θ0 ∧ ωji (2.30)

=
1

S
∇(h,θ)
j ∇(h,θ)

i (S)θj ∧ θ0. (2.31)

∴ I can read off that R0i0j = 1
S
∇(h,θ)
i ∇(h,θ)

j (S) and R0ijk = 0 (these two determine other
(anti)symmetry related index permutations too).
The remaining Riemann tensor components follow from

1

2
Ri

jklθ
k ∧ θl = dωij + ωiµ ∧ ω

µ
j (2.32)

= dω
(h)i

j + ωi0 ∧ ω0
j + ωik ∧ ωkj (2.33)

= dω
(h)i

j +
1

S
∇(h,θ)
i (S)θ0 ∧ 1

S
∇(h,θ)
j (S)θ0 + ω

(h)i
k ∧ ω

(h)k
j (2.34)

= dω
(h)i

j + ω
(h)i

k ∧ ω
(h)k

j . (2.35)

The RHS is the same as the corresponding structure equation on (Σt, h).

∴ By the uniqueness of the solutions to the structure equations, it follows that Rijkl = R
(h)
ijkl.

These expressions were in the tetrad indices. I can go back to the {t, xi} indices as follows.
t is completely decoupled from the xi in gµν , and likewise θ0 from θi.
∴ Only R0i0j and Rijkl being non-zero in the tetrad basis will imply that only R0i0j and Rijkl

will be non-zero in the {t, xi} basis too.

R
(coor.)
0i0j = (θµ)0(θ

ν)i(θ
ρ)0(θ

σ)jR
(tetrad)
µνρσ (2.36)

= (θ0)0(θ
k)i(θ

0)0(θ
l)jR

(tetrad)
0k0l by the decoupling (2.37)

= S(θk)iS(θ
l)j

1

S
∇(h,θ)
i ∇(h,θ)

j (S) (2.38)

= S∇(h)
i ∇(h)

j S. (2.39)

For the other index combination, Rijkl = R
(h)
ijkl is automatically inherited by the coordinate

basis components.
From hereon, I no longer need the tetrad.
∴ All quantities, unless otherwise stated, are in the {t, xi} coordinate basis.
Finally, I can compute the Ricci tensor components,

R00 = gµνRµ0ν0 (2.40)

= hijS∇(h)
i ∇(h)

j S noting the relevant non− zero components (2.41)

= S□(h)S, (2.42)

R0i = gµνRµ0νi = 0 and (2.43)

Rij = gµνRµiνj = − 1

S2
R0i0j + hklRkilj = − 1

S
∇(h)
i ∇(h)

j S +R
(h)
ij , (2.44)
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which are the expressions claimed in the theorem. □

Corollary 2.4.1. The Ricci scalar is R = R(h) − 2
S
□(h)S.

Proof. R = gµνRµν = − 1
S2S□(h)S + hij

(
R

(h)
ij − 1

S
∇(h)
i ∇(h)

j S
)
= R(h) − 2

S
□(h)S. □

Corollary 2.4.2. The components of the Einstein tensor are Gtt = 1
2
S2R(h), Gti = 0 and

Gij = G
(h)
ij + 1

S
(hij□(h)S −∇(h)

i ∇(h)
j S).

Although theorem 2.4 was proven using tetrads, the Christoffel symbols for adapted coordinates
will also be needed briefly later.

Lemma 2.5. The Christoffel symbols for adapted coordinates are

Γ0
00 = 0, Γ0

0i =
1

S
∇(h)
i S, Γ0

ij = 0, Γi00 = S∇(h)iS, Γi0j = 0 and Γijk = Γ
(h)i

jk. (2.45)

Proof. The proof is straightforward by direct evaluation.

Γiµν =
1

2
giρ(∂µgνρ + ∂νgρµ − ∂ρgµν) (2.46)

=
1

2
hij(∂µgνj + ∂νgjµ − ∂jgµν). (2.47)

∴ Γi0j = 0 by ∂tgµν = 0 & g0k = 0, Γi00 = −1
2
hij∂j(−S2) = S∇(h)iS and Γijk = Γ

(h)i
jk.

Γ0
µν =

1

2
g0ρ(∂µgνρ + ∂νgρµ − ∂ρgµν) (2.48)

= −1

2

1

S2
(∂µgν0 + ∂νg0µ − ∂0gµν) (2.49)

= − 1

2S2
(∂µgν0 + ∂νg0µ + 0) (2.50)

∴ Γ0
00 = 0, Γ0

0i = − 1
2S2∂i(−S2) = 1

S
∇(h)
i S and Γ0

ij = 0. □

Thus far, I have analysed some implications of the spacetime being static. However, I am also
assuming asymptotic flatness and this too imposes some very strict constraints on (M, g). I’ll
be formulating the static uniqueness problems as systems of partial differential equations on Σt

in the domain of outer communication. Thus, Σt has two boundaries, namely its intersection
with the event horizon, H+, and the boundary at infinity.
Let H = H+ ∩ Σt denote the inner boundary.
For the boundary at infinity, the construction of (M, g) as an asymptotically flat manifold (at
least locally) foliated by constant t surfaces makes Σt an asymptotically flat end (for each t).
∴ The boundary at infinity is a sphere, Sn−2

∞ , because an asymptotically flat end is diffeomorphic
to Rn with a compact set removed and has metric & extrinsic curvature,

hij = δij +O(1/rn−3) (2.51)

Kij = O(1/rn−2), (2.52)

where r =
√
xixi and xi are “almost Cartesian” coordinates arising from the diffeomorphism.

The asymptotics at Sn−2
∞ contain a lot of physically important information.
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Definition 2.6 (Mass and charge). The ADM mass3 is defined to be

M =
1

16π

∫
Sn−2
∞

ni(∂jhij − ∂ihjj)dA. (2.53)

When the matter fields include a Maxwell field, F , the electric charge is defined to be

Q =
1

4π

∫
Sn−2
∞

⋆F. (2.54)

Note that
∫
Sn−2
∞

should be interpreted as limr→∞
∫
Sn−2
r

and one has to use the almost Cartesian
coordinates from the asymptotically flat end. With the benefit of hindsight, I will also define
the quantities

q =
4πQ

(n− 3)ωn−2

and (2.55)

m =
16πM

(n− 2)ωn−2

, (2.56)

where ωn−2 is the area of a unit radius Sn−2.

I will assume the following asymptotic expansions, which are standard in the literature - e.g.
compare with [11, 8, 15, 13, 9, 10].

Definition 2.7 (Asymptotics). To leading order near Sn−2
∞ ,

S = 1− m

2rn−3
and (2.57)

hij =

(
1 +

m

(n− 3)rn−3

)
δij. (2.58)

It has to actually be proven there exist coordinates near Sn−2
∞ such that these asymptotics are

valid. Unfortunately, I never got around to studying these proofs, so I’ll have to defer to [19]
and applicable results in subsequent work, e.g. [5, 20]. An interesting fact to note though is
that [19, 5, 20] all assume the vacuum Einstein equations in their proof of equations 2.57 and
2.58. I haven’t yet found an explicit generalisation to the Einstein-Maxwell system, which will
be studied in chapter 5.

Observe that dS ̸= 0 near Sn−2
∞ by equation 2.57. When this happens, the coordinate sys-

tem can be further refined. Indeed in chapter 3, it will be assumed this is always possible.

Definition 2.8 (Israel coordinates). When dS ̸= 0, one can use the Israel coordinates4. These
use S itself as a coordinate, since dS ̸= 0. The full coordinate system is {t, S, xA} where A runs
from 2 to n− 1 and the xA are coordinates on constant t and S surfaces. In Israel coordinates,
the metric is

g = −S2dt⊗ dt+ ρ2dS ⊗ dS + h̃ABdx
A ⊗ dxB. (2.59)

3Perhaps this is more aptly called ADM energy, but it doesn’t really matter for static spacetimes.
4I have given them this name because of their successful use by Israel in [1], which I’ll discuss in chapter 3.
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Proof. It’s worth saying a bit more about why the metric can be written in this form.
Let {xA}n−1

A=2 be local coordinates on a particular constant S surface.
∴ dS is normal to that hypersurface.
Extend xA off that hypersurface by keeping xA constant along flows of (dS)a.
That way only S changes along flows of (dS)a, meaning (dS)a ∝ (∂/∂S)a.
∴ There are no dS-dxA cross terms in the metric. Then, I just define ρ2 (ρ > 0 without loss of
generality) to be whatever the coefficient of dS ⊗ dS is in the metric5. I know that coefficient
must be positive because Σt is Riemannian. □

I’ve already mentioned dS ̸= 0 near Sn−2
∞ . It is also true in another region.

Lemma 2.9. dS ̸= 0 just outside the event horizon of a non-extremal black hole in a spacetime
satisfying the conditions of theorem 2.2.

Proof. By continuity, the value of d(kaka) on the event horizon equals the limit of d(kaka)
while approaching the event horizon from any path. Outside the event horizon, I can evaluate
d(kaka) in the adapted coordinates.
∴ d(kaka) = limd(−S2) = −2 lim(SdS).
Corollary 2.2.1 means S tends to zero as one approaches the event horizon.
∴ Since (d(kbkb))a = −2κka ̸= 0 on the event horizon of a non-extremal black hole, dS must
diverge for d(kaka) = −2 lim(SdS) to hold.
∴ dS must be non-zero just outside the event horizon. □

Note that I’m effectively always dealing with non-extremal black holes because of the assump-
tions that I made for theorem 2.2. To deduce some significant results about the event horizon
using Israel coordinates, I’ll first need a few auxiliary lemmas.

Lemma 2.10. In Israel coordinates, the Christoffel symbols are

Γ
(h)S

SS =
1

ρ
∂Sρ, Γ

(h)S
SA =

1

ρ
∂Aρ, Γ

(h)S
AB = −1

ρ
KAB,

Γ
(h)A

SS = −ρh̃AB∂Bρ, Γ
(h)A

SB = ρKA
B and Γ

(h)A
BC = Γ

(h̃)A
BC , (2.60)

where Kij is the extrinsic curvature tensor for constant S surfaces.

Proof. dS is normal to constant S surfaces. From equation 2.59, (dS)i(dS)i =
1
ρ2
.

∴ A unit normal is na = ρ dS ⇐⇒ na = 1
ρ
∂
∂S
.

∴ The induced metric, ĥ, is ĥij = hij − ninj = hij − ρ2δi1δj1. Then, the extrinsic curvature is

Kij =
1

2
(Lnĥ)ij (2.61)

=
1

2
(nk∂kĥij + ĥkj∂in

k + ĥik∂jn
k) (2.62)

=
1

2

(
1

ρ
δk1∂k(hij − ρ2δi1δj1) + (hkj − ρ2δk1δj1)∂i

(
1

ρ
δk1
)

+ (hik − ρ2δi1δk1)∂j

(
1

ρ
δk1
))

. (2.63)

∴ KAB =
1

2ρ
∂Sh̃AB since hA1 = 0 by equation 2.59. (2.64)

5Note that all the metric components can depend on S, unlike the similar rigmarole with t in equation 2.12,
where ka being static meant all the metric components were t independent.
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The Christoffel symbols can be found using the Euler-Lagrange equations of

L =
1

2
hij

dxi

dλ

dxj

λλ
(2.65)

=
1

2
ρ2

dS

dλ

dS

dλ
+

1

2
h̃AB

dxA

dλ

dxB

dλ
. (2.66)

For S, I have

∂L
∂S

= ρ
dS

dλ

dS

dλ

∂ρ

∂S
+

1

2
∂S(h̃AB)

dxA

dλ

dxB

dλ
= ρ

dS

dλ

dS

dλ

∂ρ

∂S
+ ρKAB

dxA

dλ

dxB

dλ
and

(2.67)

d

dλ

(
∂L

∂
(
dS
dλ

)) =
d

dλ

(
ρ2

dS

dλ

)
= ρ2

d2S

dλ2
+ 2ρ

(
∂ρ

∂S

dS

dλ
+ ∂A(ρ)

dxA

dλ

)
dS

dλ
. (2.68)

∴ 0 =
d2S

dλ2
+

1

ρ

∂d

∂S

dS

dλ

dS

dλ
+

2∂A(ρ)

ρ

dxA

dλ

dS

dλ
− 1

ρ
KAB

dxA

dλ

dxB

dλ
. (2.69)

Hence Γ
(h)S

ij takes the values claimed in the lemma. Next, Γ
(h)A

ij.

∂L
∂xA

= ρ
dS

dλ

dS

dλ

∂ρ

∂xA
+

1

2
∂A(h̃BC)

dxB

dλ

dxC

dλ
. (2.70)

d

dλ

 ∂L

∂
(

dxA

dλ

)
 =

d

dλ

(
h̃AB

dxB

dλ

)
(2.71)

= h̃AB
d2xB

dλ2
+ ∂S

(
h̃AB

) dS

dλ

dxB

dλ
+ ∂C

(
h̃AB

) dxB

dλ

dxC

dλ
(2.72)

= h̃AB
d2xB

dλ2
+ 2ρKAB

dS

dλ

dxB

dλ
+ ∂C

(
h̃AB

) dxB

dλ

dxC

dλ
. (2.73)

∴ 0 = h̃AD
(
h̃DB

d2xB

dλ2
+ 2ρKDB

dxB

dλ

dS

dλ
+ ∂C

(
h̃DB

) dxB

dλ

dxC

dλ
− ρ

∂ρ

∂xD
dS

dλ

dS

dλ

− 1

2
∂D

(
h̃BC

) dxB

dλ

dxC

dλ

)
(2.74)

=
d2xA

dλ2
+ 2ρKA

B

dxB

dλ

dS

dλ
+

1

2
h̃AD

(
∂Bh̃CD + ∂C h̃DB − ∂Dh̃BC

) dxB

dλ

dxC

dλ

− ρh̃AB∂B(ρ)
dS

dλ

dS

dλ
(2.75)

=
d2xA

dλ2
+ 2ρKA

B

dxB

dλ

dS

dλ
+ Γ

(h̃)A
BC

dxB

dλ

dxC

dλ
− ρh̃AB∂B(ρ)

dS

dλ

dS

dλ
. (2.76)

∴ Γ
(h)A

ij take the values claimed. □

Corollary 2.10.1. The Ricci tensor components are

R
(h)
SS = −ρ(□(h̃)ρ+ ∂SK + ρKABK

AB), R
(h)
AS = ρ(∇(h̃)

b KB
A − ∂AK), and

R
(h)
AB = R

(h̃)
AB − 1

ρ
∇(h̃)
A ∇(h̃)

B ρ−KKAB − 1

ρ
h̃AC∂SK

C
B , (2.77)

where K = hijKij = h̃ABKAB.
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Proof. From the Christoffel symbols I calculated,

R
(h)i

jkl = ∂kΓ
(h)i

jl − ∂lΓ
(h)i

jk + Γ
(h)i

mkΓ
(h)m

jl − Γ
(h)i

mlΓ
(h)m

jk. (2.78)

∴ Rij = R
(h)k

ikj = ∂kΓ
(h)k

ij − ∂jΓ
(h)k

ik + Γ
(h)k

mkΓ
(h)m

ij − Γ
(h)k

mjΓ
(h)m

ik. (2.79)

∴ R
(h)
SS = ∂kΓ

(h)k
SS − ∂SΓ

(h)k
Sk + Γ

(h)k
mkΓ

(h)m
SS − Γ

(h)k
mSΓ

(h)m
Sk (2.80)

= ∂S

(
1

ρ
∂Sρ

)
+ ∂A

(
−ρh̃AB∂Bρ

)
− ∂S

(
1

ρ
∂Sρ

)
− ∂S(ρK) +

1

ρ2
∂S(ρ)∂S(ρ) +K∂Sρ

− h̃AB∂A(ρ)∂B(ρ)− ρΓ
(h̃)A

BAh̃
BC∂Cρ−

1

ρ2
∂S(ρ)∂S(ρ) + h̃AB∂A(ρ)∂B(ρ)

+ h̃AB∂A(ρ)∂B(ρ)− ρ2KA
BK

B
A (2.81)

= −h̃AB∂A(ρ)∂B(ρ)− ρ∂A(h̃
AB∂Bρ)− ρ∂SK −K∂Sρ+K∂Sρ

− ρΓ
(h̃)A

BAh̃
BC∂Cρ+ h̃AB∂A(ρ)∂B(ρ)− ρ2KA

BK
B
A (2.82)

= −ρ∂A(h̃AB∇(h̃)
B ρ)− ρ∂SK − ρΓ

(h̃)A
BAh̃

BC∇(h̃)
C ρ− ρ2KABK

AB (2.83)

= −ρ∂A(∇(h̃)Aρ)− ρ∂SK − ρΓ
(h̃)A

BA∇̃
(h̃)Bρ− ρ2KABK

AB (2.84)

= −ρ□(h̃)ρ− ρ∂SK − ρ2KABK
AB. (2.85)

R
(h)
Sa = ∂kΓ

(h)k
SA − ∂AΓ

(h)k
Sk + Γ

(h)k
mkΓ

(h)m
SA − Γ

(h)k
mAΓ

(h)m
Sk (2.86)

= ∂S

(
1

ρ
∂Aρ

)
+ ∂B

(
ρKB

A

)
− ∂A

(
1

ρ
∂Sρ

)
− ∂A(ρK) +

1

ρ2
∂S(ρ)∂A(ρ) +K∂Aρ

+KB
A∂Bρ+ ρKB

AΓ
(h̃)C

BC − 1

ρ2
∂A(ρ)∂S(ρ)−KB

A∂Bρ+KB
A∂Bρ

− ρKB
CΓ

(h̃)C
BA (2.87)

= − 1

ρ2
∂S(ρ)∂A(ρ) +

1

ρ
∂S∂Aρ+ ρ∂BK

B
A +

1

ρ2
∂A(ρ)∂S(ρ)−

1

ρ
∂A∂Sρ−K∂Aρ− ρ∂AK

+K∂Aρ+ ρKB
AΓ

(h̃)C
BC − ρKB

CΓ
(h̃)C

BA (2.88)

= ρ∂BK
B
A + ρKB

AΓ
(h̃)C

BC − ρKB
CΓ

(h̃)C
BA − ρ∂AK (2.89)

= ρ∇(h̃)
B KB

A − ρ∇(h̃)
A K. (2.90)

R
(h)
AB = ∂kΓ

(h)k
AB − ∂BΓ

(h)k
Ak + Γ

(h)k
mkΓ

(h)m
AB − Γ

(h)k
mBΓ

(h)m
Ak (2.91)

= ∂S

(
−1

ρ
KAB

)
+ ∂CΓ

(h̃)C
AB − ∂B

(
1

ρ
∂Aρ

)
− ∂BΓ

(h̃)C
AC − 1

ρ2
∂S(ρ)KAB −KKAB

+
1

ρ
∂C(ρ)Γ

(h̃)C
AB + Γ

(h̃)C
DCΓ

(h̃)D
AB − 1

ρ2
∂B(ρ)∂A(ρ) +KC

BKAC +KCBK
C
A

− Γ
(h̃)C

DBΓ
(h̃)D

AC (2.92)

= R
(h̃)
AB − 1

ρ
∂SKAB +

1

ρ2
∂S(ρ)KAB − 1

ρ
∂B∂Aρ+

1

ρ2
∂B(ρ)∂A(ρ)−

1

ρ2
∂S(ρ)KAB −KKAB

+
1

ρ
∂C(ρ)Γ

(h̃)C
AB − 1

ρ2
∂B(ρ)∂A(ρ) + 2KACK

C
B (2.93)

= R
(h̃)
AB − 1

ρ
∂SKAB − 1

ρ
∇(h̃)
A ∇(h̃)

B ρ−KKAB + 2KACK
C
B . (2.94)

14



This can be re-written in the form stated in the lemma as follows.

1

ρ
h̃AC∂SK

C
B =

1

ρ
h̃AC∂S

(
h̃CDKDB

)
(2.95)

=
1

ρ
h̃AC h̃

CD∂SKDB +
1

ρ
h̃ACKDB∂Sh̃

CD (2.96)

=
1

ρ
∂SKAB +

1

ρ
h̃ACKDB∂Sh̃

CD. (2.97)

The second term can be re-written in terms of the extrinsic curvature because
0 = ∂S

(
δAB

)
= ∂S

(
h̃AC h̃CB

)
= h̃AC∂Sh̃CB + h̃CB∂Sh̃

AC = 2ρKA
B + h̃CB∂Sh̃

AC implies

0 = h̃BD2ρKA
B + h̃BDh̃CB∂Sh̃

AC =⇒ ∂Sh̃
AB = −2ρKAB.

∴
1

ρ
h̃AC∂SK

C
B =

1

ρ
∂SKAB +

1

ρ
h̃ACKDB(−2ρKCD) (2.98)

=
1

ρ
∂SKAB − 2ρKACK

C
B . (2.99)

Hence, I finally get R
(h)
AB = R

(h̃)
AB − 1

ρ
∇(h̃)
A ∇(h̃)

B ρ−KKAB − 1
ρ
h̃AC∂SK

C
B . □

Corollary 2.10.2. The Ricci scalar is R(h) = R(h̃) −K2 −KABK
AB − 2

ρ
□(h̃)ρ− 2

ρ
∂SK.

Proof. R(h) = hijR
(h)
ij = 1

ρ2
R

(h)
SS + h̃ABR

(h)
AB. Then, using the components I just calculated,

R(h) = − 1

ρ2
ρ(□(h̃)ρ+ ∂SK + ρKABK

AB)

+ h̃AB
(
R

(h̃)
AB − 1

ρ
∇(h̃)
A ∇(h̃)

B ρ−KKAB − 1

ρ
h̃AC∂SK

C
B

)
(2.100)

= −1

ρ
□(h̃)ρ− 1

ρ
∂SK −KABK

AB +R(h̃) − 1

ρ
□(h̃)ρ−K2 − 1

ρ
∂SK (2.101)

= −2

ρ
□(h̃)ρ− 2

ρ
∂SK −KABK

AB +R(h̃) −K2, (2.102)

which is the expression claimed. □

Corollary 2.10.3. The components of the Einstein tensor are

G
(h)
SS =

1

2
ρ2(−R(h̃) +K2 −KABK

AB), G
(h)
SA = ρ(∇(h̃)

b KB
A − ∂AK) and

G
(h)
AB = G

(h̃)
AB −KKAB +

1

2
h̃AB(K

2 +KABK
AB)

+
1

ρ
(h̃AB□

(h̃)ρ+ h̃AB∂SK −∇(h̃)
A ∇(h̃)

B ρ− h̃AC∂SK
C
B ). (2.103)

Proof. Follows directly from G
(h)
ij = R

(h)
ij − 1

2
R(h)hij and the earlier corollaries. □

Lemma 2.11. Under the conditions of theorem 2.2, the surface gravity, κ, is positive.

Proof. The conditions of theorem 2.2 imply κ ̸= 0. Assume κ < 0 for a contradiction.
In corollary 2.2.1, I have already shown the event horizon, H+, is a Killing horizon of ka.
Let V a be tangent to a future directed timelike curve passing through H+ such that V a is not
parallel to ka (at any point where the curve hits H+).
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ka is chosen to be future directed at null infinity without loss of generality.
∴ ka remains future directed all through the domain of outer communication because theorem
2.2 says it’s timelike throughout that region and ka can’t flip from one light cone to the other
while remaining timelike.
∴ ka is null and non-zero on the H+ =⇒ ka is still future directed on H+.
∴ V aka < 0.
Then, V a∇a(k

bkb) = −2κV aka on H+ =⇒ sgn(V a∇a(k
bkb)) = sgn(κ) = −.

Timelike curves fall into the black hole, so sgn(V a∇a(k
bkb)) = − and kaka = 0 on H+ together

imply kaka < 0 inside the black hole.
But, theorem 2.2 says kaka < 0 outside the black hole too.
∴ ∇a(k

bkb) = 0 on H+.  
This is a contradiction because ∇a(k

bkb) = 0 on H+ implies κ = 0, contradicting the κ < 0
assumption. □

Lemma 2.12. As one approaches the event horizon, ρ→ 1
κ
, where κ is the surface gravity.

Proof. It follows pretty much from the definition of the Hodge star that for a p-form, α, and a
vector field or one-form, X (i.e. Xa or Xa), ⋆(α ∧X) = ιX ⋆ α.
Let ω = 1

2
⋆ (k ∧ dk).

∴ ⋆(k ∧ ω) = − ⋆ (ω ∧ k) = −ιk ⋆ ω = −1
2
(−1)nιk(k ∧ dk).

Let N = kaka. Then, using the Killing equation liberally,

2(−1)n ⋆ (k ∧ ω) + k ∧ dN

= −ιk(k ∧ dk) + k ∧ dN (2.104)

= −kc(k ∧ dk)cab + (k ∧∇(kckc))ab (2.105)

= −kc(kc(dk)ab + ka(dk)bc + kb(dk)ca) + 2kak
c∇bkc − 2kbk

c∇akc (2.106)

= −N(dk)ab − kak
c(dk)bc − kbk

c(dk)ca + kak
c(dk)bc − kbk

c(dk)ac (2.107)

= −N(dk)ab (2.108)

= −2N∇akb. (2.109)

For a static vector field, k ∧ dk is zero though6.

∴ 4N2∇a(kb)∇a(kb) = (k ∧ dN)ab(k ∧ dN)ab (2.110)

= (ka∇b(N)− kb∇a(N))(ka∇b(N)− kb∇a(N)) (2.111)

= 2N∇a(N)∇a(N)− 2(ka∇a(N))2 (2.112)

= 2N∇a(N)∇a(N)− 2(2kakb∇a(kb))
2 (2.113)

= 2N∇a(N)∇a(N)− 0. (2.114)

∴ 2N∇a(kb)∇a(kb) = ∇a(N)∇a(N). (2.115)

∴ −2S2∇a(kb)∇a(kb) = ∇a(−S2)∇a(−S2) using adapted coordinates. (2.116)

∴ ∇a(kb)∇a(kb) = −2∇a(S)∇a(S) (2.117)

= − 2

ρ2
using Israel coordinates. (2.118)

6This is true on a Killing horizon of ka regardless of further assumptions.
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Next, observe that

(dk|dk) ⋆ k = ιkε(dk|dk) (2.119)

= ιk(dk ∧ ⋆dk) (2.120)

= ιk(dk) ∧ ⋆dk + dk ∧ ιk(⋆dk) (2.121)

= ιk(dk) ∧ ⋆dk + 2dk ∧ ω (2.122)

= ιk(dk) ∧ ⋆dk by k ∧ dk = 0 (2.123)

= −dN ∧ ⋆dk. (2.124)

On the event horizon, dN = −2κk by the definition of surface gravity. So, on the event horizon,
(dk|dk) ⋆ k = 2κk ∧ ⋆dk. Next, observe that

(⋆(k ∧ ⋆dk))a =
1

(n− 1)!
ϵbc1···cn−2a(k ∧ ⋆dk)bc1···cn−2 (2.125)

=
1

(n− 2)!
εbc1···cn−2ak

bεefc1···cn−2∇ekf (2.126)

= −2(−1)n−2δe[bδ
f
a]k

b∇ekf (2.127)

= −2(−1)nkb∇bka (2.128)

= −2(−1)nκka. (2.129)

∴ k ∧ ⋆dk = −2κ ⋆ k (2.130)

Substituting this back up, I get (dk|dk) ⋆ k = −4κ2 ⋆ k ⇐⇒ (dk|dk) = −4κ2 ⇐⇒
2∇a(kb)∇a(kb) = −4κ2. Substituting this back into equation 2.118 says ρ2 = 1

κ2
. I can

take the positive square root by lemma 2.11, thereby completing the proof. □

The main upshot of these last three lemmas is the following theorem.

Theorem 2.13. Near the event horizon a static black hole,

RabcdR
abcd =

4

S2ρ6
(∂Sρ)

2 +
8

S2ρ4
∇(h̃)
A (ρ)∇(h̃)A(ρ) +

4

ρ2S2
KABK

AB +R
(h)
ijklR

(h)ijkl. (2.131)

Proof. From the proof of theorem 2.4, the only non-zero components of Rµνρσ in this coordinate

system are R0i0j = S∇(h)
i ∇(h)

j S, Rijkl = R
(h)
ijkl and components related by the Riemann tensor’s

symmetries.

∴ RabcdR
abcd = 4R0i0jR

0i0j +RijklR
ijkl (2.132)

= 4S∇(h)
i ∇(h)

j (S)
1

S3
∇(h)i∇(h)j(S) +R

(h)
ijklR

(h)ijkl (2.133)

=
4

S2
∇(h)
i ∇(h)

j (S)∇(h)i∇(h)j(S) +R
(h)
ijklR

(h)ijkl. (2.134)

In Israel coordinates,

∇(h)
i ∇(h)

j S = ∂i∂jS − Γ
(h)k

ji∂kS = 0− Γ
(h)1

ji. (2.135)

Then, by lemma 2.10,

∇(h)
i ∇(h)

j (S)∇(h)i∇(h)j(S)

= (h11)2(Γ
(h)1

11)
2 + 2h11hABΓ

(h)1
1AΓ

(h)1
1B + hAChBDΓ

(h)1
ABΓ

(h)1
CD (2.136)

=

(
1

ρ2

)2(
1

ρ
∂Sρ

)2

+ 2
1

ρ2
h̃AB

1

ρ
∂A(ρ)

1

ρ
∂B(ρ) + h̃AC h̃BD

(
−1

ρ
KAB

)(
−1

ρ
KCD

)
(2.137)

=
1

ρ6
(∂Sρ)

2 +
2

ρ4
∇(h̃)
A (ρ)∇(h̃)A(ρ) +

1

ρ2
KABK

AB. (2.138)

Substituting this into equation 2.134 gives the claimed result. □
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Corollary 2.13.1. ∂Sρ, ∇(h̃)
A (ρ) and KAB are all zero on the event horizon.

Proof. S → 0+ as one approaches H+ and by lemma 2.12, ρ approaches the non-zero, finite
value, 1

κ
, as one approaches H+.

∴ Since every term on the RHS of equation 2.131 is positive definite, the event horizon can
only be regular (in the sense that RabcdR

abcd → ∞ would be a curvature singularity) if ∂Sρ,

∇(h̃)
A (ρ) and KAB are all zero. □

In chapter 3, some very strong assumptions will be made about the topology of constant t and
S surfaces. In particular, such surfaces will be assumed to be spheres. This is true near Sn−2

∞
from the definition of an asymptotically flat end. However, it is also a true statement about
H = Σt ∩ H+, which is a surface with constant t and constant S, namely S = 0. For the
remainder of this chapter, I will work towards the proof of this latter claim.

Lemma 2.14. Let H be the intersection of the event horizon, H, with a spacelike hypersurface.
Then, the Ricci scalar of H is related to the Riemann tensor of the overall manifold by

R(H) = βacβbdRabcd, (2.139)

where βab is the induced metric on H.

Proof. R(H) will be found by first finding the Riemann tensor of H.
Let Xa be a vector tangent to H and hence invariant under projection, i.e. βabX

b = Xa.
Let Ka be tangent to the affinely parameterised null generators of the event horizon, H. Let
na be another set of null vectors on H such that Kana = −1. Extend na off H by parallel
transport along Ka.
Then, βab = gab +Kanb +Kbna.
Let Da be the Levi-Civita covariant derivative on H. Then, by definition,

DaDbX
c = βdaβ

e
bβ

c
f∇dDeX

f (2.140)

= βdaβ
e
bβ

c
f∇d(β

g
eβ

f
h∇gX

h) (2.141)

= βdaβ
e
bβ

c
f β

g
eβ

f
h∇d∇gX

h + βdaβ
e
bβ

c
f β

g
e∇d(β

f
h)∇gX

h

+ βdaβ
e
bβ

c
f∇d(β

g
e)β

f
h∇gX

h (2.142)

= βdaβ
e
bβ

c
f∇d∇eX

f + βdaβ
e
bβ

c
f∇d(β

f
g )∇eX

g + βdaβ
e
bβ

c
f∇d(β

g
e)∇gX

f . (2.143)

βeb∇d(β
g
e) = βeb(K

g∇dne + ng∇dKe) since β
e
bKe = βebne = 0.

Since H is a submanifold, there always exist functions, a, b, c & e and 1-forms, ya & za, such
that na = a(db)a + bya, Ka = c(de)a + eza and on H, b = e = 0.

∴ βdaβ
e
b∇d(β

g
e) = βdaβ

e
b(K

g∇dne + ng∇dKe) (2.144)

= βdaβ
e
b(K

g∇d(a∇eb+ bye) + ng∇d(c∇ee+ eze)) (2.145)

= βdaβ
e
b(K

g∇d(a)∇eb+ aKg∇d∇eb+Kg∇d(b)ye + bKg∇dye

+ ng∇d(c)∇ee+ cng∇d∇ee+ ng∇d(e)ze + eng∇dze) (2.146)

= βdaβ
e
b

(
1

a
Kg∇d(a)ne + aKg∇d∇eb+

1

a
Kgndye

+
1

c
ng∇d(c)Ke + cng∇d∇ee+

1

c
ngKdze

)
on H (2.147)

= βdaβ
e
b(aK

g∇d∇eb+ cng∇d∇ee) by βabKb = βabnb = 0, (2.148)
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which is now manifestly symmetric in a and b on H.
Meanwhile, βcf∇d(β

f
g ) = βcf (Kg∇dn

f + ng∇dK
f ) since βcfK

f = βcfn
f = 0.

∴ By equation 2.143 and the subsequent results,

R
(H)c

dabX
d

= [Da, Db]X
c (2.149)

= βdaβ
e
bβ

c
f [∇d,∇e]X

f + 2βdaβ
e
bβ

c
f (Kg∇[d(n

f )∇e]X
g + ng∇[d(K

f )∇e]X
g) (2.150)

= βdaβ
e
bβ

c
f [∇d,∇e]X

f

− 2βdaβ
e
bβ

c
fXg(∇[d(n

f )∇e]K
g +∇[d(K

f )∇e]n
g) as KaXa = naXa = 0 (2.151)

= βdaβ
e
bβ

c
fR

f
gdeX

g − 2βdaβ
e
bβ

c
fXg(∇[d(n

f )∇e]K
g +∇[d(K

f )∇e]n
g). (2.152)

∴ R
(H)c

dab

= βgaβ
e
bβ

c
f (R

f
dge − 2∇[g(n

f )∇e]Kd − 2∇[g(K
f )∇e]nd) as Xa is arbitrary. (2.153)

∴ R(H) = βdbR
(H)a

dab (2.154)

= βdbβgaβ
e
bβ

a
f (R

f
dge − 2∇[g(n

f )∇e]Kd − 2∇[g(K
f )∇e]nd) (2.155)

= βacβbd(Rabcd −∇a(nc)∇d(Kb)−∇a(Kc)∇d(nb) +∇d(nc)∇a(Kb)

+∇d(Kc)∇a(nb)). (2.156)

H is a Killing horizon. Since the expansion, shear and rotation are all zero on a Killing horizon,
βacβbd∇cKd = 0.

∴ R(H) = βacβbd(Rabcd −∇a(nc)∇d(Kb)−∇a(Kc)∇d(nb)). (2.157)

Also observe that βab∇aKb = 0 because gab∇aKb = ∇aK
a = 0 as the expansion is zero,

Kanb∇aKb = 0 as affinely parameterised implies Ka∇aKb = 0 and naKb∇aKb = 0 by
KbKb = 0.
That leaves R(H) = βacβbdRabcd. □

Theorem 2.15 (Hawking and Ellis [16]). For each black hole in a stationary, regular pre-
dictable, four dimensional spacetime with matter satisfying the dominant energy condition, the
intersection of the event horizon with a spacelike hypersurface is homeomorphic to either a
sphere or a torus.

Proof. Let H be the intersection of the event horizon, H, with a spacelike hypersurface, typi-
cally some Cauchy slice, Σt.
∴ H is a 2D spacelike surface. H must be compact, because otherwise H would be extended
and thus incompatible with the M\J−(I+) definition of a black hole.
∴ I can introduce two null normals, say Ka and na, to H. Without loss of generality, as-
sume that on H, Ka is an affinely parameterised generator of null geodesics and that on H,
Kan

a = −1. By multiplying both Ka and na by −1 if required, choose Ka and na to both be
future directed and with na pointing into the region bounded by H.
Consider a null geodesic congruence generated by na.
Let σ be an affine parameter for flows along na. Let Ω be the surface generated by flows along
na and off H.
Let Hσ be the images of the points on H after flowing by σ.
Since H is a spacelike 2-surface, for small enough σ, so is Hσ.
Extend Ka off H as follows.
Hσ is a spacelike 2-surface with na as a null normal.
∴ Enforcing Kana = −1 on Hσ, K

aKa = 0 on Hσ and Ka is normal to Hσ uniquely determines
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Figure 2.1: The set-up for theorem 2.15.

Ka on Hσ. This way, K
a is uniquely determined on Ω.

Extend Ka off Hσ to create a Hσ in an arbitrary way while keeping Ka null.
Extend na off Hσ and into Hσ in any way that keeps Kan

a = −1.
This construction is depicted visually in figure 2.1.
Since I’ve enforced Kana = −1, and KaKa = nana = 0 on each Hσ, the induced metric on
each Hσ must be βab = gab +Kanb +Kbna.
My construction of the Ka and na also imposes a differential constraint on them. To see how,
let T a be an arbitrary tangent vector to Hσ.
Adopting the equivalence class of curves definition of tangent vectors, let T a = [γ(t)].
Let Φσ :M →M denote flows along na. Since Hσ is defined by flowing off the points on H, it
follows that [γ(t)] goes to [Φσ′

(γ(t))] as one goes from Hσ to Hσ+σ′ .
Choose σ′ to be infinitesimally close to 0.
Then, [Φσ′

(γ(t))] = (Φσ′
)∗[γ(t)] = (Φ−σ′

)∗[γ(t)] = (Φ−σ′
)∗(T a) = T a − σ′(LnT )a.

Since Ka is defined so that it stays normal to Hσ, Ka must adapt to these changes in T a.

∴ 0 = Ka(LnT )a (2.158)

= Ka

(
nb∇bT

a − T b∇bn
a
)

(2.159)

= nb∇b (KaT
a)− T anb∇bKa −KaT

b∇bn
a. (2.160)

KaT
a = 0 on all Hσ and nb∇b is a direction derivative between Hσ when acting on a scalar,

like KaTa.

∴ 0 = nb∇b(KaT
a). (2.161)

∴ 0 = T anb∇bKa +KaT
b∇bn

a (2.162)

= T a
(
nb∇bKa +Kb∇an

b
)
. (2.163)

Since T a is an arbitrary tangent vector, it follows that nb∇bKa +Kb∇an
b must be orthogonal
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to Hσ ∀σ. Thus, I get the differential constraint,

0 = βab (nc∇cKb +Kc∇bn
c) . (2.164)

∴ βabnc∇cKb = −βabKc∇bnc (2.165)

= βabnc∇bKc since I enforced Kana = −1. (2.166)

Let pa = βabnc∇bKc. Hence, the identity says pa = βabnc∇bKc = −βabKc∇bnc = βabnc∇cKb.
I will first try to prove

∇g(β
e
cβ

d
f∇dK

c)ngβaeβ
f
b = βac∇d(pc)β

d
b + papb − βac∇f (K

c)βfe∇d(ne)β
d
b

+Rc
defn

eKdβacβ
f
b . (2.167)

The LHS expands out to

LHS = ∇g(β
e
c)β

d
f∇d(K

c)ngβaeβ
f
b + βec∇g(β

d
f )∇d(K

c)ngβaeβ
f
b

+ βecβ
d
f∇g∇d(K

c)ngβaeβ
f
b (2.168)

= nf∇f (β
e
c)∇d(K

c)βaeβ
d
b + nf∇f (β

d
e)∇d(K

c)βacβ
e
b + ne∇e∇d(K

c)βacβ
d
b . (2.169)

In the 1st term, if Ke or ne don’t get differentiated, then βaeK
e = βaen

e = 0.
However, when ne does get differentiated, nf∇fn

e = 0 from ne being tangent to affinely
parameterised null geodesics.
∴ The first term in equation 2.169 can be simplified to

nf∇f (β
e
c)∇d(K

c)βaeβ
d
b = nfnc∇f (K

e)∇d(K
c)βaeβ

d
b (2.170)

= papb. (2.171)

The 3rd term in equation 2.169 is

ne∇e∇d (K
c) βacβ

d
b = ne∇d∇e (K

c) βacβ
d
b + ne[∇e,∇d] (K

c) βacβ
d
b (2.172)

= ne∇d∇e (K
c) βacβ

d
b +Rc

fedn
eKfβacβ

d
b . (2.173)

∴ So far, my analysis of equation 2.167 simplifies to

LHS− RHS = nf∇f (β
d
e)∇d(K

c)βacβ
e
b + ne∇d∇e(K

c)βacβ
d
b − βac∇d(pc)β

d
b

+∇f (K
c)∇d(ne)β

a
cβ

efβdb (2.174)

= nf∇f (β
d
e)∇d(K

c)βacβ
e
b + ne∇d∇e(K

c)βacβ
d
b − βac∇d(β

e
c n

f∇fKe)β
d
b

+∇f (K
c)∇d(ne)β

a
cβ

efβdb (2.175)

= nf∇f (β
d
e)∇d(K

c)βacβ
e
b + ne∇d∇e(K

c)βacβ
d
b − βac∇d(β

e
c )n

f∇f (Ke)β
d
b

− βacβ e
c ∇d(n

f )∇f (Ke)β
d
b − βacβ e

c n
f∇d∇f (Ke)β

d
b

+∇f (K
c)∇d(ne)β

a
cβ

efβdb (2.176)

= nf∇f (β
d
e)∇d(K

c)βacβ
e
b −∇d(β

c
e)n

f∇f (K
e)βacβ

d
b −∇d(n

e)∇e(K
c)βacβ

d
b

+∇f (K
c)∇d(ne)β

a
cβ

efβdb . (2.177)

In the 1st term, if Ke or ne don’t get differentiated, then β
e
bKe = βebne = 0. Also, if ne does

get differentiated, then nf∇fne = 0 from the geodesic property.
∴ nf∇f (β

d
e)∇d(K

c)βacβ
e
b = nfnd∇f (Ke)∇d (K

c) βacβ
e
b .

Then, KeKe = 0 ⇒ Ke∇fKe = 0, removing the Kenb term from βeb .
For the neKb term, nf∇f (Ke)n

e = −nf∇f (n
e)Ke = 0.
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∴ nf∇f (β
d
e)∇d(K

c)βacβ
e
b = nfnd∇f (Ke)∇d (K

c) βacδ
e
b = nfnd∇f (Kb)∇d (K

c) βac
Similarly, in the 2nd term of equation 2.177, if Kc or nc don’t get differentiated, then βacK

c

and βacn
c equal 0.

∴ ∇d(β
c
e)n

f∇f (K
e)βacβ

d
b = ne∇d(K

c)nf∇f (K
e)βacβ

d
b +Ke∇d(n

c)nf∇f (K
e)βacβ

d
b (2.178)

= ne∇d(K
c)nf∇f (K

e)βacβ
d
b + 0 from ke∇fK

e = 0 (2.179)

= −Ke∇d(K
c)nf∇f (n

e)βacβ
d
b (2.180)

= 0 from the geodsic property. (2.181)

Hence, equation 2.177 simplifies to

LHS− RHS

= nfnd∇f (Kb)∇d (K
c) βac −∇d(n

e)∇e(K
c)βacβ

d
b

+∇f (K
c)∇d(ne)β

a
cβ

efβdb (2.182)

= nfnd∇f (Kb)∇d (K
c) βac −∇d(n

e)∇e(K
c)βacβ

d
b

+∇f (K
c)∇d(ne)β

a
cβ

d
b(g

ef +Kenf +Kfne) (2.183)

= nfnd∇f (Kb)∇d (K
c) βac −∇d(n

e)∇e(K
c)βacβ

d
b +∇e(K

c)∇d(ne)β
a
cβ

d
b

+Kenf∇f (K
c)∇d(ne)β

a
cβ

d
b + 0 from ne∇dne = 0 (2.184)

= nfnd∇f (Kb)∇d (K
c) βac +Kenf∇f (K

c)∇d(ne)β
a
cβ

d
b (2.185)

= nfnd∇f (Kb)∇d (K
c) βac − nenf∇f (K

c)∇e(Kd)β
a
cβ

d
b by the pb expressions. (2.186)

Now, in the 2nd term, Kd∇eKd = 0 and ne∇e (Kd)n
d = −ne∇e (nd)K

d = 0
∴ LHS− RHS = nfnd∇f (Kb)∇d (K

c) βac − nenf∇f (K
c)∇e(Kd)β

a
cδ
d
b = 0.

In summary, the proposition of equation 2.167 is true.
Next, contract both sides of equation 2.167 with βba .

∴ LHS = βba∇g(β
e
cβ

d
f∇dK

c)ngβaeβ
f
b (2.187)

= βban
e∇e(β

a
cβ

d
b∇dK

c) (2.188)

= ne∇e(β
b
aβ

a
cβ

d
b∇dK

c)− ne∇e(β
b
a)β

a
cβ

d
b∇dK

c (2.189)

= ne∇e(β
d
c∇dK

c)− ne∇e(β
b
a)β

a
cβ

d
b∇dK

c. (2.190)

On the horizon, H, βacβ
d
b∇dK

c = 0 because the expansion, shear and rotation all vanish on a
Killing horizon. Furthermore, in general, βdc∇dK

c = θK , the expansion along the Ka direction.
Hence, on H, I’m left with LHS = na∇aθK = dθK

dσ
.

On the RHS, I’ll go term by term.

βac∇d(pc)β
d
bβ

b
a = βab∇apb. (2.191)

papbβ
b
a = βacnd∇c(Kd)pbβ

b
a = βbcnd∇c(Kd)pb = papa. (2.192)

βac∇f (K
c)βfe∇d(ne)β

d
bβ

b
a = βcaβ

b
d∇c(K

d)∇b(n
a) (2.193)

= 0 on H, as above. (2.194)

Rc
defn

eKdβacβ
f
bβ

b
a = Ra

bcdn
cKbβda (2.195)

= Ra
bcdn

cKb(δda + ndKa +Kdna) (2.196)

= −RabK
anb + 0 +RabcdK

aKcnbnd. (2.197)

Hence, putting all the pieces together, on H I have

dθK
dσ

= βab∇apb + papa −RabK
anb +RabcdK

aKcnbnd. (2.198)
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Next, let K ′ = efK and n′ = e−fn for some function, f .
∴ Kana = −1, KaKa = 0 and nana = 0 remain true everywhere.
In what follows, only f ’s value and variation on H will matter, so I’ll assume without loss of
generality that na∇af = Ka∇af = 0.
∴ n′a∇an

′b = e−fna∇a

(
e−fnb

)
= e−2fna∇an

b − e−2fnbna∇af = 0 + 0 = 0.
∴ n′a remains a tangent to affinely parameterised geodesics.
Products like Kanb remain invariant because the ef and e−f cancel.
The shear, rotation and expansion likewise remain zero on H because
βacβ

d
b∇d(K

′c) = βacβ
d
b∇d(e

fKc) = efβacβ
d
b∇d(K

c) + efβacβ
d
bK

c∇d(f) = 0 + 0 = 0.
∴ On H, I can use equation 2.198 to say

dθK′

dσ′ = βab∇ap
′
b + p′ap′a −RabK

anb +RabcdK
aKcnbnd. (2.199)

Re-writing in terms of the old variables,
p′a = βabn′c∇bK

′
c = βabe−fnc∇b

(
efKc

)
= pa + βabncKc∇b(f) = pa − βab∇bf .

Then, Kb∇bf = nb∇bf = 0 ⇒ p′a = pa − gab∇bf = pa −∇af .
∴ On H,

dθK′

dσ′ = βab∇apb − βab∇a∇bf + p′ap′a −RabK
anb +RabcdK

aKcnbnd. (2.200)

Let D be the (Levi-Civita) covariant derivative on H.
∴ From the properties of the induced metric, DaDaf = βabβ

c
a∇b∇cf = βab∇a∇bf . So, on H,

dθK′

dσ′ = βab∇apb −DaDaf + p′ap′a −RabK
anb +RabcdK

aKcnbnd. (2.201)

DaDaf is the Laplacian of f on H.
Since H is compact, there applies a theorem of Hodge that for a function, F, ∃f such that
DaDaf = F if and only if

∫
H F dA = 0.

Let ⟨F ⟩ = 1
A

∫
H F dA, with the area, A, well-defined because H is compact. Note that ⟨F ⟩ is

just a constant on H.
∴
∫
H(F − ⟨F ⟩)dA =

∫
H FdA− ⟨F ⟩

∫
H dA = A⟨F ⟩ − A⟨F ⟩ = 0.

∴ ∃f such that DaDaf − F is a constant (namely −⟨F ⟩) for any F .
∴ I can choose f in equation 2.201 so that βab∇apb −DaDaf − RabK

anb + RabcdK
aKcnbnd is

a constant on H.
∴ dθK′

dσ′ − p′ap′a is constant on H with that choice of f .
I can now finally get towards the topology part of the proof. Let H0 be an arbitrary connected
component of H, i.e. H0 is what one intuitively thinks of as the boundary of an individual
black hole. Since H0 is a 2D compact, connected, closed surface, the Gauss-Bonnet theorem
says χ(H0) =

1
4π

∫
H0
R(H)dA. By lemma 2.14,

R(H) = βacβbdRabcd (2.202)

= (gac +Kanc +Kcna)(gbd +Kbnd +Kdnb)Rabcd (2.203)

= R +RbdK
bnd +RbdK

dnb +RacK
anc +RabcdK

aKbncnd +RabcdK
aKdncnb

+RacK
cna +RabcdK

cKbnand +RabcdK
cKdnanb (2.204)

= R + 4RabK
anb − 2RabcdK

aKcnbnd. (2.205)

This expression is invariant under the e±f scalings I performed earlier, so I can use it liberally.
The Einstein equation says Rab − 1

2
Rgab = 8πTab.

23



∴ Contracting with Kanb and using Kana = −1, RabK
anb + 1

2
R = 8πTabK

anb.

∴ R(H) = 16πTabK
anb + 2(RabK

anb −RabcdK
aKcnbnd). (2.206)

∴ χ(H0) = 4

∫
H0

TabK
anb dA+

1

2π

∫
H0

(RabK
anb −RabcdK

aKcnbnd)dA. (2.207)

Next, observe that sinceH0 has no boundary of its own,
∫
H0
DaDaf dA = 0 by Stokes’ theorem.

Likewise, in proving βbap
apb = papa earlier, I actually showed βabp

b = pa.
∴ Dapa = βacβ

b
a∇cpb = βab∇apb =⇒

∫
H0
βab∇apb dA =

∫
H0
Dapa dA = 0 too.

∴ χ(H0) = 4

∫
H0

TabK
anb dA

+
1

2π

∫
H0

(RabK
anb −RabcdK

aKcnbnd +DaDaf − βab∇apb)dA (2.208)

= 4

∫
H0

TabK
anb dA+

1

2π

∫
H0

(
p′ap

′a − dθK′

dσ

′)
dA (2.209)

= 4

∫
H0

TabK
anb dA+

A0

2π

(
p′ap

′a − dθK′

dσ′

)
, (2.210)

where A0 is the area of H0.
SinceKa and na are null vectors and I’ve assumed the dominant energy condition, TabK

anb ≥ 0.
∴ The only way χ(H0) can be negative is if

dθK′
dσ′ > p′ap

′a.
βabp

b = pa and β being a projection operator means pa is a valid tensor on H0. Since H0 is
spacelike, it follows that p′ap

′a ≥ 0.
By construction, na pointed into the black hole region. Hence, negative values of σ correspond
to points outside the black hole.
∴ θK′ = 0 on a Killing horizon - as H is - and

dθK′
dσ′ > 0 on H0 =⇒ θK′ < 0 at all points just

off H0 outside the black hole.
∴ There is an outer trapped surface.
However, in a regular predictable spacetime, outer trapped surfaces must be contained inside
the black hole region.
∴ χ(H0) ≥ 0.
Since the only compact, closed, connected 2D surfaces with non-negative Euler characteristic
are the sphere and the torus, the proof is complete. □

The torus case has subsequently been ruled out using “topological censorship” methods - e.g.
see [21, 22, 23]. However, these methods are completely different to what I’ve built so far in
this chapter, my understanding of those topics is a little unsatisfactory and it’s also quite the
diversion to explain topological censorship here. Hence, I won’t elaborate on those results any
further.
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Chapter 3

The beginning - Israel’s original proof

In this chapter I will present a full account of the original black hole uniqueness result, due
to Israel [1]. Many of the details of my presentation are taken from [15]. However, across all
areas of the literature, it’s a little unclear exactly what assumptions are made in proving this
theorem, so I’ve put together what I believe to be a comprehensive list and proof.

Theorem 3.1 (Israel [1, 15]). Let (M, g) be a spacetime with the following properties:

1. M is 4 dimensional.

2. M is time orientable.

3. (M, g) is asymptotically flat.

4. (M, g) is static.

5. d(kaka) ̸= 0 at all points, where ka is the Killing vector field making (M, g) static.

6. The event horizon is non-empty and connected.

7. The energy-momentum tensor is Tab = 0.

8. dS ̸= 0 at all times and in Israel coordinates (see equation 2.59 earlier), constant t and
S surfaces are diffeomorphic to spheres.

Then, (M, g) is isometric to the Schwarzschild spacetime, with metric

g = −
(
1− 2M

r

)
dt⊗ dt+

1

1− 2M
r

dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2(θ)dϕ⊗ dϕ. (3.1)

Assumptions 2, 4 and 5 justify the use of adapted coordinates, while assumption 8 justifies
the use of Israel coordinates. From assumption 7, the Einstein equation is Rab = 0, meaning
the equations of motion are □(h)S = 0 and R

(h)
ij = 1

S
∇(h)
i ∇(h)

j S, by theorem 2.4. Assumption
3 justifies the use of asymptotics as per definition 2.7. Finally, I will also need the following
property.

Lemma 3.2. 0 ≤ S < 1 everywhere on Σt.

Proof. Since □(h)S = 0, the Hopf principle says S is extremised on the boundaries of Σt.
On the inner boundary, H, S = 0 and by equation 2.57, S → 1− on the outer boundary, Sn−2

∞ .
Hence, the claim follows. □
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In summary, the task is to solve the following problem.

Definition 3.3 (Problem summary). Given the pair, (Σt, h), the problem studied in this chapter
is summarised by the equations,

□(h)S = 0 and R
(h)
ij =

1

S
∇(h)
i ∇(h)

j S, (3.2)

and the boundary conditions, S = 0 on H, 0 ≤ S < 1 everywhere and

S = 1− m

2r
= 1− M

r
& hij =

(
1 +

m

r

)
δij =

(
1 +

2M

r

)
δij (3.3)

at Sn−2
∞ .

Proof of Israel’s theorem. First, I’ll need two expressions in Israel coordinates, namely

∇(h)
i ∇(h)

j S = ∂i∂jS − Γ
(h)k

ji∇
(h)
k S (3.4)

= 0− Γ
(h)k

jiδk1 in Israel coordinates (3.5)

= −Γ
(h)S

ji and therefore (3.6)

□(h)S = −hijΓ(h)S
ji (3.7)

= − 1

ρ2
1

ρ
∂Sρ+ h̃AB

1

ρ
KAB by lemma 2.10 (3.8)

= − 1

ρ3
∂Sρ+

K

ρ
. (3.9)

Then, since □(h)S = 0,

∂Sρ = ρ2K. (3.10)

The main substance of the proof proceeds by constructing some seemingly bizarre linear com-
binations of the Einstein equations that when integrated miraculously conspire to prove the
theorem.
The Einstein tensor vanishing means 1

S2Gtt +
1
ρ2
GSS = 0 too.

∴ 0 =
1

2
R(h) +

1

ρ2
G

(h)
SS +

1

ρ2S
(hSS□

(h)S −∇(h)
S ∇(h)

S S) by corollary 2.4.2 (3.11)

=
1

2
R(h) +

1

ρ2
G

(h)
SS +

1

ρ2S

(
ρ2
(
− 1

ρ3
∂Sρ+

K

ρ

)
+

1

ρ
∂Sρ

)
by equations 3.6 and 3.9

(3.12)

=
1

2
R(h) +

1

ρ2
G

(h)
SS +

1

ρS
K (3.13)

=
1

2

(
R(h̃) −K2 −KABK

AB − 2

ρ
□(h̃)ρ− 2

ρ
∂SK

)
+

1

2
(−R(h̃) +K2 −KABK

AB) +
1

ρS
K by corollaries 2.10.2 and 2.10.3 (3.14)

= −KABK
AB − 1

ρ
□(h̃)ρ− 1

ρ
∂SK +

1

ρS
K. (3.15)
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The □(h̃) term is re-written by

2
√
ρ
□(h̃)√ρ = 2

√
ρ
∇(h̃)A

(
1

2
√
ρ
∇(h̃)
A ρ

)
(3.16)

=
1

ρ
□(h̃)ρ− 1

2ρ2
∇(h̃)A(ρ)∇(h̃)

A (ρ). (3.17)

∴ 0 = −KABK
AB − 2

√
ρ
□(h̃)√ρ− 1

2ρ2
∇(h̃)A(ρ)∇(h̃)

A (ρ)− 1

ρ
∂SK +

1

ρS
K. (3.18)

Let LAB = KAB− 1
2
h̃ABK be the traceless part of the extrinsic curvature. In terms of this, the

identity I’ve been working with becomes

0 = −
(
LAB +

1

2
h̃ABK

)(
LAB +

1

2
h̃ABK

)
− 2

√
ρ
□(h̃)√ρ− 1

2ρ2
∇(h̃)A(ρ)∇(h̃)

A (ρ)

− 1

ρ
∂Sρ+

1

ρS
K (3.19)

= −LABLAB − 1

2
K2 − 2

√
ρ
□(h̃)√ρ− 1

2ρ2
∇(h̃)A(ρ)∇(h̃)

A (ρ)− 1

ρ
∂SK +

1

ρS
K. (3.20)

The second, equally obscure, identity I’ll need is 0 = 1
S2Gtt +

3
ρ2
GSS.

∴ 0 =
1

2
R(h) +

3

ρ2
G

(h)
SS +

3

ρ2S
(hSS□

(h)S −∇(h)
S ∇(h)

S S) by corollary 2.4.2 (3.21)

=
1

2
R(h) +

3

ρ2
G

(h)
SS +

3

ρ2S

(
ρ2
(
− 1

ρ3
∂Sρ+

1

ρ
K

)
+

1

ρ
∂Sρ

)
by equations 3.6 and 3.9

(3.22)

=
1

2
R(h) +

3

ρ2
G

(h)
SS +

3

ρS
K (3.23)

=
1

2

(
R(h̃) −K2 −KABK

AB − 2

ρ
□(h̃)ρ− 2

ρ
∂SK

)
+

3

2
(−R(h̃) +K2 −KABK

AB) +
3

ρS
K by corollaries 2.10.2 and 2.10.3 (3.24)

= −R(h̃) +K2 − 2KABK
AB − 1

ρ
□(h̃)ρ− 1

ρ
∂SK +

3

ρS
K (3.25)

= −R(h̃) − 2LABL
AB − 1

ρ
□(h̃)ρ− 1

ρ
∂SK +

3

ρS
K. (3.26)

This time, the □(h̃) term will be re-written using

□(h̃) ln ρ = ∇(h̃)A

(
1

ρ
∇(h̃)
A ρ

)
=

1

ρ
□(h̃)ρ− 1

ρ2
∇(h̃)A(ρ)∇(h̃)

A ρ. (3.27)

∴ 0 = −R(h̃) − 2LABL
AB −□(h̃) ln ρ− 1

ρ2
∇(h̃)A(ρ)∇(h̃)

A ρ− 1

ρ
∂SK +

3

ρS
K. (3.28)
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Next, observe that

−
S
√
ρ√
h̃
∂S

(
K
√
h̃

S
√
ρ

)
= −

S
√
ρ√
h̃

( √
h̃

S
√
ρ
∂SK − K

√
h̃

S2
√
ρ
+
K∂S

√
h̃

S
√
ρ

− K
√
h̃∂Sρ

2Sρ3/2

)
(3.29)

= −∂SK +
K

S
− K∂S

√
h̃√

h̃
+
K∂Sρ

2ρ
(3.30)

= −∂SK +
K

S
− ρK2 +

1

2
ρK2 by equations 3.10 and 2.64 (3.31)

= −∂SK +
K

S
− 1

2
ρK2. (3.32)

Substituting this back into equation 3.20, I get

LABL
AB +

1

2ρ2
∇(h̃)A(ρ)∇(h̃)

A (ρ) = − 2
√
ρ
□(h̃)√ρ− S√

ρh̃
∂S

(
K
√
h̃

S
√
ρ

)
. (3.33)

∴ −2
√
h̃

S
□(h̃)√ρ ≥ ∂S

(
K
√
h̃

S
√
ρ

)
as h̃AB is Riemannian, (3.34)

with equality if and only if LAB = 0 and ∇(h̃)
A ρ = 0.

Similarly, again using ∂S
√
h̃ =

√
h̃Kρ and ∂Sρ = ρ2K from equations 2.64 and 3.10 along the

way, observe that

∂S

(
KS
√
h̃

ρ
+

4
√
h̃

ρ2

)
=
K
√
h̃

ρ
+
S
√
h̃∂SK

ρ
−K2S

√
h̃+K2S

√
h̃

+
4K
√
h̃

ρ
− 8K

√
h̃

ρ
(3.35)

= −3K
√
h̃

ρ
+
S
√
h̃∂SK

ρ
. (3.36)

Substituting this into equation 3.28, I get

0 = −R(h̃) − 2LABL
AB −□(h̃) ln ρ− 1

ρ2
∇(h̃)A(ρ)∇(h̃)

A ρ− 1

S
√
h̃
∂S

(
KS
√
h̃

ρ
+

4
√
h̃

ρ2

)
. (3.37)

∴ ∂S

(
KS
√
h̃

ρ
+

4
√
h̃

ρ2

)
≤ −S

√
h̃(R(h̃) +□(h̃) ln ρ), (3.38)

where, again, equality occurs if and only if LAB = 0 and ∇(h̃)
A ρ = 0.

Then, by equation 3.34,∫
Σt

∂S

(
K
√
h̃

S
√
ρ

)
dS ∧ dx2 ∧ dx3 ≤ −2

∫
Σt

√
h̃

S
□(h̃)√ρ dS ∧ dx2 ∧ dx3. (3.39)

∴
∫ ∫ 1

0

∂S

(
K
√
h̃

S
√
ρ

)
dSdx2 ∧ dx3 ≤ −2

∫ 1

0

1

S

∫ √
h̃□(h̃)(

√
ρ) dx2 ∧ dx3dS. (3.40)

∴
∫ [

K
√
h̃

S
√
ρ

]1
0

dx2 ∧ dx3 ≤ −2

∫ 1

0

1

S

∫
□(h̃)(

√
ρ)ε(h̃) dS (3.41)

= 0, (3.42)
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with the last line following by Stokes’/divergence theorem and spheres having no boundary.
Similarly, by equation 3.38,∫

Σt

∂S

(
KS
√
h̃

ρ
+

4
√
h̃

ρ2

)
dS ∧ dx2 ∧ dx3

≤ −
∫
Σt

S
√
h̃(R(h̃) +□(h̃) ln ρ)dS ∧ dx2 ∧ dx3. (3.43)

∴
∫ [

KS
√
h̃

ρ
+

4
√
h̃

ρ2

]1
0

dx2 ∧ dx3

≤ −
∫ 1

0

S

∫ √
h̃(R(h̃) +□(h̃) ln ρ)dx2 ∧ dx3dS (3.44)

= −
∫ 1

0

S

∫ √
h̃R(h̃)dx2 ∧ dx3dS by the Stokes′/divergence theorem again (3.45)

= −8π

∫ 1

0

S dS by the Gauss− Bonnet theorem (3.46)

= −4π. (3.47)

Now I have to evaluate the integrals on the LHSs of these inequalities. First consider S = 0,
the event horizon. Then, by lemma 2.12, ρ = 1/κ. From equation 3.13,

K

ρS
= −1

2
R(h) − 1

ρ2
G

(h)
SS (3.48)

= − 1

ρ2
G

(h)
SS since the Einstein equation implies R(h) = 0 (3.49)

= −1

2
(−R(h̃) +K2 −KABK

AB) by corollary 2.10.3. (3.50)

By corollary 2.13.1, it follows that K
ρS

= 1
2
R(h̃) on the event horizon.

∴
∫
K
√
h̃

S
√
ρ

∣∣∣∣
S=0

dx2 ∧ dx3 =
1

2
√
κ

∫
R(h̃)

√
h̃ dx2 ∧ dx3 (3.51)

=
4π√
κ

by the Gauss− Bonnet theorem. (3.52)

For the other integral inequality,∫ (
KS
√
h̃

ρ
+

4
√
h̃

ρ2

)∣∣∣∣
S=0

dx2 ∧ dx3 =

∫
(0 + 4κ2

√
h̃)dx2 ∧ dx3 = 4κ2A (3.53)

where A is the area of the event horizon.
The other part is S = 1, the asymptotically flat end.
By definition 2.7, to leading order

S = 1− M

r
. (3.54)

By definition, 1/ρ2 = ∇(h)
i (S)∇(h)i(S). Near infinity, I can raise and lower indices with δ and

I can use the asymptotically Cartesian coordinates.
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∴ ∇(h)
i S ≡ dS = M

r2
dr =⇒ ∇(h)

i (S)∇(h)i(S) = M2

r4
hrr = M2

r4
=⇒ ρ = r2/M .

Then, for the extrinsic curvature, by equation 3.10,

K =
∂Sρ

ρ2
=

1

dS/dr

d

dr

(
r2

M

)
M2

r4
=
r2

M

2r

M

M2

r4
=

2

r
. (3.55)

Now, I’m ready to evaluate the S = 1 integrals.∫
K
√
h̃

S
√
ρ

∣∣∣∣
S=1

dx2 ∧ dx3 = lim
r→∞

∫ 2π

0

∫ π

0

2

r

√
M

r
r2 sin(θ)dθdϕ (3.56)

= 8π
√
M. (3.57)∫ (

KS
√
h̃

ρ
+

4
√
h̃

ρ2

)∣∣∣∣
S=1

dx2 ∧ dx3 = lim
r→∞

∫ 2π

0

∫ π

0

(
2

r

M

r2
+

4M2

r4

)
r2 sin(θ)dθdϕ (3.58)

= 0. (3.59)

In summary, the integral inequalities I derived reduce to 8π
√
M ≤ 4π√

κ
and −4κ2A ≤ −4π.

∴M ≤ 1
4κ

and A ≥ π
κ2
.

However, the Smarr relation says M = κA
4π
, so the first inequality becomes A ≤ π

κ2
.

∴ The two inequalities can be consistent only if they were actually equalities to begin with.

As I proved earlier, equality occurs if and only if LAB = KAB − 1
2
h̃ABK = 0 and ∇(h̃)

A ρ = 0.
The latter equation means ρ depends only on S, since covariant and partial derivatives are
identical on scalars.
∴ Equation 3.10 becomes K = 1

ρ2
dρ
dS

= − d
dS

(
1
ρ

)
.

∴ K also depends only on S.
With the results so far, equation 3.20 reduces to

0 = − 1

2ρ4

(
dρ

dS

)2

− 1

ρ

d

dS

(
1

ρ2
dρ

dS

)
+

1

ρ3S

dρ

dS
(3.60)

=
3

2ρ4

(
dρ

dS

)2

− 1

ρ3
d2ρ

dS2
+

1

ρ3S

dρ

dS
. (3.61)

∴ 0 =
S

ρ3/2
d2ρ

dS2
− 1

ρ3/2
dρ

dS
− 3S

2ρ5/2

(
dρ

dS

)2

(3.62)

=
d

dS

(
S

ρ3/2
dρ

dS

)
− 2

ρ3/2
dρ

dS
(3.63)

=
d

dS

(
S

ρ3/2
dρ

dS
+

4

ρ1/2

)
. (3.64)

∴ C1 =
S

ρ3/2
dρ

dS
+

4

ρ1/2
(3.65)

for some integration constant, C1
1. The ODE left is separable. I get

dS

S
= − dρ

C1ρ3/2 + 4ρ
. (3.66)

∴ − ln(S) =

∫
dρ

C1ρ3/2 + 4ρ
. (3.67)

1I will be arbitrarily relabelling and scaling the integration constants without any further mention.
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Let p =
√
ρ. Then, dρ = 2p dp.

∴ − ln(S) =

∫
2dp

4p+ C1p2
(3.68)

=

∫ (
1

2p
− C1

2(4 + C1p)

)
dp (3.69)

=
1

2
ln(p)− C1

2
ln(4 + C1p) + C2 for some constant C2. (3.70)

∴ S2 =
4 + C1p

C2p
⇐⇒ p =

C1

S2 − C2

. (3.71)

∴ ρ =
C1

(S2 − C2)2
. (3.72)

I showed earlier that near the asymptotically flat end, ρ = r2

M
and S2 = 1 − 2M

r
to leading

order.

∴
M

r2
=

1

C1

(
1− 2M

r
− C2

)2

=
(1− C2)

2

C1

− 4(1− C2)M

rC1

+
4M2

C1r2
. (3.73)

∴ C2 = 1 and C1 = 4M. (3.74)

∴ ρ =
4M

(1− S2)2
. (3.75)

∴ K = − d

dS

(
1

ρ

)
=
S(1− S2)

M
. (3.76)

Then, by equation 3.50 and LAB = 0, I get

R(h̃) =
2K

ρS
+K2 − 1

4
h̃ABKh̃

ABK (3.77)

=
2K

ρS
+

1

2
K2 (3.78)

=
2

S

(1− S2)2

4M

S(1− S2)

M
+

1

2

S2(1− S2)2

M2
(3.79)

=
(1− S2)2

2M2
. (3.80)

Since R(h̃) depends only on S and the constant, M , and every constant S surface is assumed
to be a sphere, each constant S surface is a sphere with a constant scalar curvature.
A corollary of the solution to Liouville’s equation says that the only metric on the sphere that
yields a constant scalar curvature is the round metric.
∴ h̃AB dxA ⊗ dxB = r2(dθ ⊗ dθ + sin2(θ) dϕ⊗ dϕ), where r is the area-radius of the sphere. A

sphere with this metric is known to have Ricci scalar, R(h̃) = 2/r2.

∴ 2
r2

= (1−S2)2

2M2 ⇐⇒ S2 = 1− 2M
r
.

Since this equation between S and r is one-to-one, I can swap S out for r in the adapted
coordinates. Then, the term in the metric becomes

ρ2dS ⊗ dS =
16M2

(1− (1− 2M
r
))4

d

(√
1− 2M

r

)
⊗ d

(√
1− 2M

r

)
(3.81)

=
r4

M2

2M
r2

2
√

1− 2M
r

dr ⊗
2M
r2

2
√

1− 2M
r

dr (3.82)

=
dr ⊗ dr

1− 2M/r
. (3.83)
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Hence, I can finally conclude that the metric is

g = −S2dt⊗ dt+ ρ2dS ⊗ dS + h̃ABdx
A ⊗ dxB (3.84)

= −
(
1− 2M

r

)
dt⊗ dt+

dr ⊗ dr

1− 2M/r
+ r2(dθ ⊗ dθ + sin2(θ) dϕ⊗ dϕ), (3.85)

which is the Schwarzschild solution. □
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Chapter 4

The end - the most comprehensive
proof

In this chapter I’ll present the most comprehensive proof of the Schwarzschild solution’s unique-
ness among static, asymptotically flat spacetimes. My exposition is based on [7].

Theorem 4.1 ([5, 6, 7]). Let (M, g) be a spacetime with the following properties:

1. M is n dimensional.

2. M is time orientable.

3. (M, g) is asymptotically flat.

4. (M, g) is static.

5. d(kaka) ̸= 0 whenever kaka = 0, where ka is the Killing vector field making (M, g) static.

6. The energy-momentum tensor is Tab = 0.

Then, (M, g) is isometric to the Schwarzschild spacetime, with metric

g = −
(
1− m

rn−3

)
dt⊗ dt+

1

1− m
rn−3

dr ⊗ dr + r2gSn−2 . (4.1)

Most saliently, theorem 4.1 doesn’t make assumptions about event horizon connectedness or
spacetime dimension, unlike [1, 2, 3]. The actual PDE problem to be solved is ultimately
exactly the same as chapter 3.

Definition 4.2 (Problem summary). Given the pair, (Σt, h), the problem studied in this chapter
is summarised by the equations,

□(h)S = 0 and R
(h)
ij =

1

S
∇(h)
i ∇(h)

j S, (4.2)

and the boundary conditions, S = 0 on H, 0 ≤ S < 1 everywhere and

S = 1− m

2rn−3
& hij =

(
1 +

m

(n− 3)rn−3

)
δij (4.3)

at Sn−2
∞ .
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Figure 4.1: The construction of the manifold, Σ̂, invented by [5].

Proof. The genius of Bunting and Masood-ul-Alam’s proof [5] lies in the construction of a
specific new manifold, Σ̂, I’ll describe below.
It begins by considering two conformal transformations,

h±ij = Ω2
±hij where (4.4)

Ω± =

(
1± S

2

)2/(n−3)

. (4.5)

Note that Ω± are well defined conformal factors because 0 ≤ S < 1 in definition 4.2.
Let the copies of Σt with these metrics be denoted Σ± = (Σt, h±).
Since S = 0 on H, Ω+|H = Ω−|H =⇒ h+|H = h−|H.
∴ I can glue Σ+ and Σ− together along their inner boundaries, H+ and H− respectively, to get
a manifold which still has a continuous metric,

ĥ =

{
h+ on Σ+

h− on Σ−
. (4.6)

The resulting manifold now has two asymptotically flat ends - one each from Σ+ and Σ−.
Let P be a point at infinity and get rid of the asymptotically flat end from Σ− by performing
a one point compactification with P on that end.
The resulting manifold is Σ̂ and is depicted in figure 4.1. In summary, Σ̂ = {P}⊔Σ−⊔Σ+, with
a one point compactification between P and Σ− and a gluing between the inner boundaries of
Σ+ and Σ−.
Σ̂ has a number of great properties.
It has just the one boundary at infinity and has no inner boundary.
Consider the one point compactification in more detail. Since an asymptotically flat end is
diffeomorphic to Rn−1 minus a compact set, the smooth structure is identical to the one point
compactification of Rn−1 to Sn−1.
However, this is Riemannian geometry, so one would need the metric to also extend well to P ;
I’ll show this happens too.
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From the asymptotics of S in definition 4.2, to leading order, near P

Ω− =

(
1− S

2

)2/(n−3)

=
( m

2rn−3

)2/(n−3)

=
(m
2

)2/(n−3) 1

r2
(4.7)

=⇒ h−ij =
1

r4

(m
2

)2/(n−3)

δij. (4.8)

The r → ∞ limit, to get to P , cannot be defined in this coordinate system, but it can by
changing to zi =

1
r2
xi. zi = 0 would then be P . I’ll still raise and lower these indices near

infinities by δ, so all indices can just be subscripts.

r2 = xixi = r4zizi =⇒ zizi =
1

r2
. (4.9)

∴ d(zizi) = d(1/r2) = − 2

r3
dr =⇒ dr = −r3zidzi. (4.10)

Hence, in the zi coordinates, to leading order h− is

h− =
1

r4

(m
2

)2/(n−3)

dxi ⊗ dxi (4.11)

=
1

r4

(m
2

)2/(n−3)

d(r2zi)⊗ d(r2zi) (4.12)

=
1

r4

(m
2

)2/(n−3)

(r2dzi + 2rzidr)⊗ (r2dzi + 2rzidr) (4.13)

=
1

r4

(m
2

)2/(n−3)

(r2dzi − 2r4zizjdzj)⊗ (r2dzi − 2r4zizkdzk) (4.14)

=
1

r4

(m
2

)2/(n−3)

(r4dzi ⊗ dzi − 4r6zizjdzi ⊗ dzj + 4r8zizizjzkdzj ⊗ dzk) (4.15)

=
(m
2

)2/(n−3)

dzi ⊗ dzi using zizi = 1/r2. (4.16)

This now is smoothly extendable to zi = 0 ⇐⇒ r → ∞.
∴ ĥ is smoothly extendable to P .
Furthermore, ĥ is smooth everywhere else too, except perhaps on the join between H− and
H+. Even there, on directions parallel to H±, smoothness is inherited from Ω± and Σt. It only
remains to see how the derivatives behave perpendicular to H±.
As a proxy for that, one typically uses the extrinsic curvature of H±.
Upon a conformal transformation, h′ = Ω2h, the extrinsic curvature transforms as [15]

K
(h′)
ij = ΩK

(h)
ij + nk(h

′
ij − ninj)∇(h′)k(ln(Ω)), (4.17)

where ni is a unit normal in the h′ metric.
By corollary 2.13.1, K

(h)
ij is zero 1 on H.

∴ K
(h±)
ij = nk(h±ij − ninj)∇(h±)k(ln(Ω±)) (4.18)

= nk

(
1

24/(n−3)
hij − ninj

)
24/(n−3)∇(h)k(ln(Ω±)) as Ω± =

1

22/(n−3)
on H (4.19)

= nk(hij − 24/(n−3)ninj)∇(h)k(ln(Ω±)). (4.20)

1Corollary 2.13.1 only says KAB = 0, but in the Israel coordinates used there, K0i = 0 automatically, so
the whole tensor is indeed zero.
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On H±, the derivative in this last expression is

∇(h)
i (ln(Ω±)) =

1

Ω±
∇(h)
i Ω± (4.21)

= 22/(n−3)∇(h)
i

((
1± S

2

)2/(n−3)
)∣∣∣∣

H
(4.22)

= 22/(n−3) 1

22/(n−3)−1

2

n− 3

(
±1

2

)
∇(h)
i (S)|H (4.23)

= ± 2

n− 3
∇(h)
i (S)|H. (4.24)

Hence, for the extrinsic curvature I get

K
(h±)
ij = ± 2

n− 3
nk(hij − 24/(n−3)ninj)∇(h)k(S)|H. (4.25)

Since Ω+ = Ω− on H, the normal, ni, is of the same magnitude for both H+ and H−; only the
direction is flipped. This direction flip cancels the ± in the last expression to mean that the
extrinsic curvatures do match when H± is viewed as a single surface in Σ̂.
∴ ĥ is at least continuously differentiable everywhere.
The next property of Σ̂ I’ll need is its Ricci scalar.
Upon a conformal transformation, h′ = Ω2h, the Ricci scalar changes as [17]

R(h′) =
R(h)

Ω2
− (n− 2)(n− 5)

Ω4
∇(h)
i (Ω)∇(h)i(Ω)− 2(n− 2)

Ω3
□(h)Ω. (4.26)

Since R
(h)
ij = 1

S
∇(h)
i ∇(h)

j S and □(h)S = 0 in definition 4.2, R(h) = hijR(h) = 1
S
□(h)S = 0.

∴ R(h±) = −n− 2

Ω3
±

(
n− 5

Ω±
∇(h)
i (Ω±)∇(h)i(Ω±) + 2□(h)Ω±

)
. (4.27)

The derivatives are

∇(h)
i Ω± = ∇(h)

i

((
1± S

2

)2/(n−3)
)

(4.28)

=
2

n− 3

(
±1

2

)(
1± S

2

)(5−n)/(n−3)

∇(h)
i S (4.29)

= ± 1

n− 3

(
1± S

2

)(5−n)/(n−3)

∇(h)
i S and (4.30)

∴ □(h)Ω± = ± 1

n− 3
∇(h)i

((
1± S

2

)(5−n)/(n−3)
)
∇(h)
i S as □(h)S = 0 (4.31)

=
5− n

2(n− 3)2

(
1± S

2

)(8−2n)/(n−3)

∇(h)
i (S)∇(h)i(S). (4.32)

Substituting these expressions back into equation 4.27 says

R(h±) = −n− 2

Ω3
±

(
(n− 5)

(
1± S

2

)−2/(n−3)
1

(n− 3)2

(
1± S

2

)2(5−n)/(n−3)

∇(h)
i (S)∇(h)i(S)

+
5− n

(n− 3)2

(
1± S

2

)(8−2n)/(n−3)

∇(h)
i (S)∇(h)i(S)

)
(4.33)

= 0. (4.34)
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The final property of Σ̂ I’ll need is that near its asymptotic end, to leading order, the metric is

Ω2
+hij =

(
1 + 1− m

2rn−3

2

)4/(n−3)(
1 +

m

(n− 3)rn−3

)
δij (4.35)

=
(
1− m

4rn−3

)4/(n−3)
(
1 +

m

(n− 3)rn−3

)
δij (4.36)

=

(
1− m

(n− 3)rn−3
+

m

(n− 3)rn−3
+O(1/rn−2)

)
δij (4.37)

= δij +O(1/rn−2). (4.38)

∴ Σ̂ has zero ADM energy.
In summary, I’ve shown so far that Σ̂ is a complete, asymptotically flat end with zero ADM
mass, zero Ricci scalar and continuously differentiable metric.
∴ From a corollary to the positive energy theorem2, (Σ̂, ĥ) is in fact just (Rn−1, δ).
∴ Taking Σ+, without loss of generality, as the copy of Σt within Σ̂, it follows that the metric
on Σt is

hij =
1

Ω2
+

δij =

(
2

1 + S

)4/(n−3)

δij. (4.39)

S is still unknown though. It will be easier to find it by changing variable to

s =
2

1 + S
⇐⇒ S =

2

s
− 1. (4.40)

The □(h)S = 0 condition says

0 = □(h)S = hij∂i∂jS − hijΓ
(h)k

ji∂kS. (4.41)

In terms of s, these quantities are as follows.

∂kS = ∂k

(
2

s
− 1

)
= − 2

s2
∂ks. (4.42)

∴ ∂i∂jS = ∂i

(
− 2

s2
∂js

)
=

4

s3
∂i(s)∂j(s)−

2

s2
∂i∂js. (4.43)

Γ
(h)k

ji =
1

2
s−4/(n−3)δkl

(
∂j(s

4/(n−3)δil) + ∂i(s
4/(n−3)δlj)− ∂l(s

4/(n−3)δji)
)

(4.44)

=
2

(n− 3)s
(δki∂js+ δkj∂is− δji∂ks). (4.45)

2There is some subtlety here. There are several proofs of the positive energy theorem, with Schoen & Yau’s
[24] and Witten’s [25] being the most popular. Witten’s proof works in all dimensions, but requires the manifold
to be spin. Schoen and Yau’s does not, but was known not to work in arbitrarily large dimensions - although
recently they claim to have generalised their ‘spin-free’ method to all dimensions [26]. I am going to brush
these subtleties under the carpet and simply assume the theorem holds.

37



Putting these expressions back into the □(h)S = 0 equation says

0 = s−4/(n−3)δij∂i∂jS − s−4/(n−3)δijΓ
(h)k

ji∂kS. (4.46)

∴ 0 = δij
(

4

s3
∂i(s)∂j(s)−

2

s2
∂i∂js

)
− δij

2

(n− 3)s
(δki∂js+ δkj∂is− δji∂ks)

(
− 2

s2
∂ks

)
(4.47)

=
4

s3
δij∂i(s)∂)i(s)−

2

s2
∇2s+

4

(n− 3)s3
∂i(s)∂i(s) +

4

(n− 3)s3
∂i(s)∂i(s)

− 4(n− 1)

(n− 3)s3
∂i(s)∂i(s) (4.48)

= − 2

s2
∇2s. (4.49)

∴ 0 = ∇2s. (4.50)

There are three parts to any boundary value problem.

1. PDE: ∇2s = 0.

2. Boundary conditions: s = 0 on H and s→ 1 + m
4rn−3 to leading order near Sn−2

∞ .

3. The boundary itself: H and Sn−2
∞ .

The third condition is usually not worth mentioning - one can’t have a boundary value problem
without saying what the boundary actually is. Usually, the boundary is obvious. However, in
this case, although I know how s behaves at the boundary, I haven’t yet actually determined
what the boundary, H, actually is. Its shape, its number of connected components etc. are all
still unknown.
H’s topology will be easier to determine by analysing H+, which has the same topology.
From equation 4.25,

K
(h+)
ij =

2

n− 3
nk(hij − 24/(n−3)ninj)∇(h)k(S)|H (4.51)

=
2(n+1)/(n−3)

n− 3
nk(h+ij − ninj)∇(h)k(S)|H (4.52)

=
2(n+1)/(n−3)

n− 3
nk∇(h)k(S)|Hh̃+ij, (4.53)

where h̃+ is the induced metric on H+.

H is a constant S surface, so ∇(h)
i S ∝ ni.

From lemma 2.12, ∇(h)
i (S)|H∇(h)i(S)|H = hij∇(h)

i (S)|H∇(h)
j (S)|H = κ2. Note that κ is only

a constant on each connected component of H+. Different horizon components could have
different surface gravities.

∴ hij+∇
(h+)
i (S)|H∇(h+)

j (S)|H = 24/(n−3)hij∇(h)
i (S)|H∇(h)

j (S)|H = 24/(n−3)κ2. (4.54)

∴ ni =
1

22/(n−3)κ
∇(h)
i (S)|H. (4.55)

∴ K
(h+)
ij =

2(n+1)/(n−3)

n− 3
nk∇(h)k(S)|Hh̃+ij =

2(n−1)/(n−3)κ

n− 3
h̃+ij. (4.56)

The fact K
(h+)
ij is a non-zero constant scaling of h̃+ij can be used to prove each connected

component of H+ is a round sphere, using a theorem from [27] I’ll describe below.
Let X i be the components of a vector tangent to H+ and let D denote the covariant derivative
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on H+. Furthermore, h+ = δ from equation 4.39; let xi be the associated Cartesian variables.

Then, ∇(h+)
i = ∂i and

Dj

(
2(n−1)/(n−3)κ

n− 3
xi − ni

)
= h̃ i

+ kh̃
l

+ j∇
(h+)
l

(
2(n−1)/(n−3)κ

n− 3
xk − nk

)
(4.57)

=
2(n−1)/(n−3)κ

n− 3
h̃ i
+ kh̃

l
+ j∇

(h+)
l xk − h̃ i

+ kh̃
l

+ j∇
(h+)
l nk (4.58)

=
2(n−1)/(n−3)κ

n− 3
h̃ i
+ kh̃

l
+ jδ

k
l −K

(h+)i
j . (4.59)

=
2(n−1)/(n−3)κ

n− 3
h̃ i
+ j −K

(h+)i
j (4.60)

= 0 by equation 4.56. (4.61)

Going back up the equation chain, this means

0 = h̃ i
+ kh̃

l
+ j∇

(h+)
l

(
2(n−1)/(n−3)κ

n− 3
xk − nk

)
= h̃ i

+ kh̃
l

+ j∂l

(
2(n−1)/(n−3)κ

n− 3
xk − nk

)
. (4.62)

∴ 2(n−1)/(n−3)κ
n−3

xk − nk is a constant on each connected component of H+. I’ll call that constant

ci, where ci can depend on the connected component in question.
Then, 1 = nini = δijninj means ∣∣∣∣∣∣∣∣2(n−1)/(n−3)κ

n− 3
x− c

∣∣∣∣∣∣∣∣2 = 1. (4.63)

∴ The points, x, which lie on H+ lie on spheres of radius, n−3
κ
2−(n−1)/(n−3), and centre3, c.

Since h+ = δ, the induced metric on each of these spheres is the standard metric on the sphere.
Then, since Ω+ is just a constant on H, the connected components of H are also just spheres
with the round metric.
As long as H+ is geodesically complete, I can start at a point, p ∈ H+, view geodesics of
H+ as being in Sn−2 and follow to arbitrary affine parameter to deduce that each connected
component of H+ is a full sphere - not just contained within a sphere.
Indeed, H+ is geodesically complete because the event horizon is assumed to be non-singular
and a spacetime is singular if and only if it’s inextendable and geodesically incomplete4.
The final step in completing requirement 3 of the boundary value problem is constraining the
number of and relationship between H’s connected components.
Suppose H is disconnected, for a contradiction.
H, H+ and H− all have identical topology and smooth structure - only the metrics are scaled
by constants.
Σ̂ = Σ+ ⊔ Σ− ⊔ {P} = Rn−1 from earlier.
∴ Σ− ⊔ {P} is a disjoint union of multiple closed balls, with the surface of each ball being one
of the connected components of H+.
∴ Σ− is also disconnected, as P is just a point at infinity.  
This contradicts Σt’s connectedness, because Σ− is topologically identical to Σt by construction.
∴ H is a sphere with radius, n−3

κ
2−(n−1)/(n−3), and the standard metric5.

3The centre’s location can be arbitrarily adjusted by changing coordinates; it has no physical meaning.
4Note that H and H+ have the same geodesics because Ω+ is a constant on H.
5Note that κ is fully determined by m because the radius determines the sphere’s area and then I can apply

the Smarr relation, m = 2κA
(n−3)ωn−2

. Hence, there is just the one free parameter in play, m.

39



It remains to consider parts 1 and 2 of the boundary value problem.
Let s1 and s2 be two solutions of the boundary value problem. Then,

∇2((s1 − s2)
2) = 2∂i((s1 − s2)∂i(s1 − s2)) (4.64)

= 2∂i(s1 − s2)∂i(s1 − s2) + 2(s1 − s2)∇2(s1 − s2) (4.65)

= 2||∂(s1 − s2)||2 as ∇2s1 = ∇2s2 = 0. (4.66)

∴
∫
Σt

2||∂(s1 − s2)||2dn−1x =

∫
Σt

∇2((s1 − s2)
2)dn−1x (4.67)

= 2

∫
Σt

∂i((s1 − s2)∂i(s1 − s2))d
n−1x (4.68)

= 2

∫
S∞
n−2

ni(s1 − s2)∂i(s1 − s2)d
n−2x

− 2

∫
H
ni(s1 − s2)∂i(s1 − s2)d

n−2x. (4.69)

On H, s1 = s2 = 2, so the second integral is zero.
Near Sn−2

∞ , the asymptotics mean s1 − s2 is O(1/r
n−3), so the integrand is O(1/r2n−5). This is

sufficiently fast decay for that integral to be zero.

∴
∫
Σt

2||∂(s1 − s2)||2dn−1x = 0 ⇐⇒ ||∂(s1 − s2)||2 = 0 ⇐⇒ s1 = s2. (4.70)

∴ The solution is unique.
Since the Schwarzschild solution solves all the conditions in definition 4.2, it must be unique
solution in question. □
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Chapter 5

The aftermath - contemporary research

The proof in chapter 4 and its subsequent extensions mean the static, asymptotically flat
uniqueness problem has largely been solved. Modern researchers have mainly pursued three
variations on the results I’ve discussed thus far.

1. Non-zero cosmological constant, Λ.

2. More exotic matter fields.

3. Avoiding the positive energy theorem.

Problem 1 is of significant physical importance and much remains unknown in this case - see
[28, 29] for some comments and recent results for asymptotically de Sitter and asymptotically
anti-de Sitter black holes respectively. I only fleetingly considered problem 1. Problem 2 is
often motivated by theories of supergravity and I made some attempts at it by studying [10]
and trying to apply it to the Einstein-Maxwell-Chern-Simons system. However, no progress
has been made (yet). Problem 3, as explained in the introduction, appeals to a somewhat more
aesthetic grievance. It’s the only one where I can said to have made any progress though. In
particular, I spent a long time studying the new work of Agostiniani and Mazzieri [13]. I’ve
had some some success in generalising their work from vacuum spacetimes to those containing
an electromagnetic field. That work is recounted here for the remainder of this chapter.

5.1 Purely electric

The substance of this chapter is dedicated to a new proof of Reissner-Nordstrom uniqueness I
worked on for a large part of the first year of my PhD. Rather than start with full Einstein-
Maxwell system, I started by adding only a purely electric field, i.e. one where ιk ⋆ F = 0.

5.1.1 Background material

Chapter 2 contained many general results, most of which I’ll call upon again in this chapter.
However, I will also need some background material specific to the Einstein-Maxwell system -
I’ll start the chapter by presenting that.

Definition 5.1 (Running assumptions). Until section 5.2, I’ll assume the spacetime, (M, g),
satisfies the following properties:

• M is n dimensional.

• M is time orientable.
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• (M, g) is asymptotically flat.

• (M, g) is static, with the Killing vector field making (M, g) static called ka.

• d(kaka) ̸= 0 whenever kaka = 0.

• The event horizon is non-empty and connected.

• The matter action is electromagnetic, i.e. S = − 1
16π

∫
F abFab

√
−g dnx for a closed 2-

form, F .

• F is invariant under ka, i.e. LkF = 0.

• F is purely electric - or equivalently the magnetic component vanishes, ιk ⋆ F = 0.

• (M, g) is globally hyperbolic.

• The mass and charge parameters, m and q, satisfy1 m > 2C|q|, where C =
√

2(n−3)
n−2

.

The equations of motion for the Einstein-Maxwell system are well known and straightforward
to derive. They are the Einstein equation,

Rab = 2F c
a Fbc −

1

n− 2
gabF

cdFcd, (5.1)

and the Maxwell equation,

∇bF
ba = 0. (5.2)

Lemma 5.2. Under the assumptions of definition 5.1, F = dψ ∧ dt, for some function, ψ,
that does not depend on t.

Note that this lemma also serves to define ψ.

Proof. First, I assumed LkF = 0, to make F compatible with the stationary nature of the
problem.

∴ 0 = kρ∂ρFµν + Fρν∂µk
ρ + Fµρ∂νk

ρ (5.3)

= ∂tFµν as k = ∂/∂t in adapted coordinates. (5.4)

Until section 5.2, I have also assumed the magnetic components, B = ιk⋆F , vanish. In adapted
coordinates, this says

0 = ερσνµ1···µn−3k
νF ρσ = ε0νρµ1···µn−3F

νρ = ε0ijµ1···µn−3F
ij. (5.5)

∴ Fij = 0. (5.6)

∴ F = F0i dt ∧ dxi. (5.7)

The F0i can be repackaged in the electric components as follows. By definition, they are

Ea = −kbFba = −(ιkF )a. (5.8)

1The m and q I refer to are actually scaled versions of the electric charge and ADM mass. My exact
definitions are given in definition 2.6. The key point is that m > 2C|q| is exactly the well known relation that
prevents naked singularities in the Reissner-Nordstrom solution.
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In adapted coordinates, this says

Eµ = −kνFνµ = −F0µ =⇒ E0 = 0 and Ei = Fi0. (5.9)

Then, by Cartan’s magic formula,

dE = d(−ιkF ) = −LkF + ιkdF = 0 + 0 = 0. (5.10)

The electric field is thus a closed 1-form. In definition 5.1, I have made all the assumptions
required to apply the topological censorship results of [22, 21] and thereby conclude the domain
of outer communication is simply connected.
∴ The first homology class of the domain of outer communication is also zero.
∴ dE = 0 =⇒ E = dψ, for some function, ψ.
From equation 5.9, ψ does not depend on t. Equation 5.9 also implies Fi0 = ∂iψ.
Finally equation 5.7 then says F = −∂i(ψ)dt ∧ dxi = dψ ∧ dt. □

I’m now ready to write the equations of motion in terms of ψ, h and S.

Theorem 5.3. The equations of motion are

S□(h)S = C2∇(h)
i (ψ)∇(h)i(ψ), (5.11)

0 = ∇(h)
i

(
1

S
∇(h)iψ

)
and (5.12)

R
(h)
ij =

1

S
∇(h)
i ∇(h)

j S +
C2

(n− 3)S2
hij∇(h)

k (ψ)∇(h)k(ψ)− (n− 2)C2

(n− 3)S2
∇(h)
i (ψ)∇(h)

j (ψ), (5.13)

where C =
√

2(n−3)
n−2

.

Proof. Let’s start with the Einstein equation. First, every component involves

F abFab = 2F i0Fi0 = − 2

S2
hijFi0Fj0 = − 2

S2
hij∂i(ψ)∂j(ψ) = − 2

S2
∇(h)i(ψ)∇(h)

i (ψ). (5.14)

Applying lemma 2.4 and equation 5.1, from the 0− 0 component of Rµν , I get

S□(h)S = 2F µ
0 F0µ −

1

n− 2
g00F

cdFcd (5.15)

= 2F i
0 F0i −

1

n− 2
(−S2)

(
− 2

S2
∇(h)i(ψ)∇(h)

i (ψ)

)
(5.16)

= 2∇(h)i(ψ)∇(h)
i (ψ)− 2

n− 2
∇(h)i(ψ)∇(h)

i (ψ) (5.17)

=
2(n− 3)

n− 2
∇(h)i(ψ)∇(h)

i (ψ) (5.18)

= C2∇(h)i(ψ)∇(h)
i (ψ). (5.19)

Next, the 0− i components say

0 = 2F µ
0 Fiµ −

1

n− 2
g0iF

abFab (5.20)

= 2F 0
0 Fi0 + 2F j

0 Fij − 0 (5.21)

= 0 + 0, (5.22)
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thus providing no new information. Finally, the i− j components say

R
(h)
ij =

1

S
∇(h)
i ∇(h)

j S + 2F µ
i Fjµ −

1

n− 2
gijF

abFab (5.23)

=
1

S
∇(h)
i ∇(h)

j S + 2F 0
i Fj0 −

1

n− 2
hij

(
− 2

S2
∇(h)k(ψ)∇(h)

k (ψ)

)
(5.24)

=
1

S
∇(h)
i ∇(h)

j S + 2

(
− 1

S2

)
∇(h)
i (ψ)∇(h)

j (ψ)− 2

(n− 2)S2
∇(h)k(ψ)∇(h)

k (ψ) (5.25)

=
1

S
∇(h)
i ∇(h)

j S − (n− 2)C2

(n− 3)S2
∇(h)
i (ψ)∇(h)

j (ψ) +
C2

(n− 3)S2
hij∇(h)

k (ψ)∇(h)k(ψ). (5.26)

Meanwhile, the Maxwell equation says

0 = ∇νFνµ (5.27)

= ∇0F0µ +∇iFiµ (5.28)

= − 1

S2
∇0F0µ + hij∇jFiµ (5.29)

= − 1

S2
∂tF0µ +

1

S2
Γν00Fνµ +

1

S2
Γνµ0F0ν + hij∂jFiµ − hijΓνijFνµ − hijΓνµjFiν (5.30)

= 0 +
1

S2
Γν00Fνµ +

1

S2
Γiµ0F0i + hijδµ0∂jFi0 − hijΓνijFνµ − hijΓ0

µjFi0. (5.31)

Using lemma 2.5, I then get

0 =
1

S
∇(h)i(S)Fiµ +

1

S
∇(h)(S)δµ0F0i + hijδµ0∂jFi0 − hijΓkijFkµ − hij

1

S
∇(h)
j (S)δµ0Fi0 (5.32)

= δµ0

(
1

S
∇(h)i(S)∇(h)

i (ψ)− 1

S
∇(h)i(S)∇(h)

i (ψ) + hij∂j(∇(h)
i (ψ))− hijΓkij∇

(h)
k (ψ)

− 1

S
∇(h)i(S)∇(h)

i (ψ)

)
(5.33)

= δµ0

(
− 1

S
∇(h)i(S)∇(h)

i (ψ) +□(h)(ψ)

)
. (5.34)

The final result, − 1
S
∇(h)i(S)∇(h)

i (ψ) + □(h)(ψ) = 0, is equivalent to the total derivative,

∇(h)
i ( 1

S
∇(h)iψ) = 0, by dividing by S. □

The equations of motion are partial differential equations; they must be supplemented by
boundary conditions for any kind of uniqueness analysis. As in the earlier chapters, the problem
is once again formulated on Σt with inner boundary, H, and outer boundary, Sn−2

∞ .
On the outer boundary, the asymptotics are only an extension of definition 2.7.

Definition 5.4 (Asymptotics). To leading order near Sn−2
∞ ,

ψ = − q

rn−3
, (5.35)

S = 1− m

2rn−3
and (5.36)

hij =

(
1 +

m

(n− 3)rn−3

)
δij. (5.37)
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The only addition to definition 2.7 is the assumption on ψ’s decay. The assumption I’m mak-
ing is not rigorously justified here, but it is the standard one used in the literature - e.g. see
[9, 10, 8, 11].

Meanwhile, at the inner boundary, H, S = 0 again as per corollary 2.2.1. For ψ, I have
the following result.

Lemma 5.5. ∇(h)
i ψ = 0 on H.

Proof. From equation 5.11, □(h)S = C2

S
∇(h)
i (ψ)∇(h)i(ψ). As explained around lemma 2.9, I can

use Israel coordinates near the event horizon. Then.

□(h)S = hij∇(h)
i ∇(h)

j S (5.38)

= −hijΓ(h)1
ji by equation 2.135 (5.39)

= − 1

ρ2
1

ρ
∂Sρ+ h̃AB

1

ρ
KAB (5.40)

= − 1

ρ3
∂Sρ+

1

ρ
K. (5.41)

Then, since lemma 2.12 and corollary 2.13.1 say ρ = 1
κ
, ∂Sρ = 0 and K = 0 on H, it follows

that 1
S
∇(h)
i (ψ)∇(h)i(ψ) → 0 as one approaches H. Since S = 0 on H (and h is Riemannian),

∇(h)
i ψ must be zero on H. □

Corollary 5.5.1. ψ equals some constant, ψ0, on H.

Lemma 5.6. With the boundary conditions assumed, 0 ≤ S < 1. Meanwhile, for ψ, if q ≥ 0,
then ψ0 ≤ ψ ≤ 0 and if q < 0, then 0 < ψ ≤ ψ0. For both S and ψ, equalities occur at the
boundaries, H or Sn−2

∞ .

Proof. From equation 5.11,

□(h)S =
C2

S
∇(h)
i (ψ)∇(h)i(ψ) ≥ 0. (5.42)

∴ The Hopf maximum principle can be applied, to conclude that S is maximised on the
boundary of Σt.
I’ve already shown S = 0 on the inner boundary, H, and S > 0 elsewhere, so the maximum
must be on Sn−2

∞ .
From equation 2.57, S → 1− as one approaches Sn−2

∞ , thereby completely proving the claims
about S.
Meanwhile, for ψ, equation 5.12 says

□(h)(ψ)− 1

S
∇(h)
i (S)∇(h)i(ψ) = 0. (5.43)

∴ The Hopf maximum principle can be applied again, this time to conclude ψ must be extrem-
ised on the boundaries of Σt.
From equation 5.35, ψ = 0 on Sn−2

∞ and ψ = ψ0 on H.
∴ One of 0 and ψ0 must be the maximum and the other must be the minimum. By equation
5.35, ψ < 0 near Sn−2

∞ when q > 0 and ψ > 0 near Sn−2
∞ when q < 0.

∴ When q > 0, 0 is the maximum and ψ0 is the minimum, while ψ0 is the maximum and 0 is
the minimum when q < 0.
When q = 0, the maximum and minimum must both be 0, meaning ψ = 0 and there’s actually
no electric field at all. □
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In summary, the equations to solve are the following.

Definition 5.7 (Problem summary). The problem studied in this section is summarised by the
equations,

S□(h)S = C2∇(h)
i (ψ)∇(h)i(ψ), (5.44)

0 = ∇(h)
i

(
1

S
∇(h)iψ

)
and (5.45)

R
(h)
ij =

1

S
∇(h)
i ∇(h)

j S +
C2

(n− 3)S2
hij∇(h)

k (ψ)∇(h)k(ψ)− (n− 2)C2

(n− 3)S2
∇(h)
i (ψ)∇(h)

j (ψ), (5.46)

where C =
√

2(n−3)
n−2

and the boundary conditions are S = 0 on H, ψ = ψ0 (a constant) on H,

∇(h)
i ψ = 0 on H, 0 ≤ S < 1 everywhere, S → 1− m

2rn−3 at Sn−2
∞ and ψ → − q

rn−3 at Sn−2
∞ .

5.1.2 Conformal reformulation

One of the key steps underpinning the proof strategy I’ll explain in this chapter is re-writing
the problem in the right variables and with the right conformal transformation.

Definition 5.8 (φ and z). Define new variables, φ and z, to replace S and ψ, by

φ = ln

(
(1 + S)2 − C2ψ2

(1− S)2 − C2ψ2

)
and z = ln

(
(1 + Cψ)2 − S2

(1− Cψ)2 − S2

)
. (5.47)

Proof. It has to be checked that this change of variables is well-defined. The expressions for
φ and z are manifestly independent, so it all just boils down to checking the arguments of the
logarithms are positive. I will follow some techniques presented in [11]. Following [11], define

F± = S ± Cψ − 1. (5.48)

Then, using equations 5.44 and 5.45,

□(h)F± = □(h)S ± C□(h)ψ (5.49)

=
C2

S
∇(h)
i (ψ)∇(h)i(ψ)± C

S
∇(h)
i (S)∇(h)i(ψ) (5.50)

∴ □(h)F± ∓ C

S
∇(h)
i (F±)∇(h)i(ψ) =

C2

S
∇(h)
i (ψ)∇(h)i(ψ)± C

S
∇(h)
i (S)∇(h)i(ψ)

∓ C

S
∇(h)i(ψ)

(
∇(h)
i (S)± C∇(h)

i (ψ)
)

(5.51)

= 0. (5.52)

This PDE for F± is of the form which the Hopf maximum principle applies to.
∴ F± is extremised on the boundary of Σt.
At the Sn−2

∞ boundary, the asymptotics in definition 5.7 mean that

F± → 1− m

2rn−3
± C

(
− q

rn−3

)
− 1 = −m± 2Cq

2rn−3
. (5.53)

Since I’m assuming m > 2C|q|, it follows that F± → 0− at Sn−2
∞ .

Meanwhile, the other boundary is at H.
Since H = {S = 0}, ∇(h)

i S is a normal to S that points into Σt. Then, since ∇(h)
i ψ = 0 on H,

∇(h)
i (S)∇(h)i(F±)|H = ∇(h)

i (S)∇(h)i(S)|H = κ2 > 0. (5.54)
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∴ F± is not maximised on H.
Since F± has to be maximised on a boundary, that boundary must be Sn−2

∞ .
Since F± → 0− there, it follows that F± = S ± Cψ − 1 < 0 everywhere on Σt itself.
∴ S < 1∓ Cψ.
Since S ≥ 0, this inequality implies S2 < (1∓ Cψ)2 ⇐⇒ (1∓ Cψ)2 − S2 > 0.
∴ z is well-defined.
Meanwhile, F± < 0 can also be written as 1− S > ±Cψ.
Since the RHS has both + & − and S < 1, the inequality implies (1− S)2 > C2ψ2.
∴ φ is also well defined. □

Lemma 5.9. In terms of the new variables, the old variables are

S =
sinh(φ/2)

cosh(φ/2) + cosh(z/2)
and Cψ =

sinh(z/2)

cosh(φ/2) + cosh(z/2)
. (5.55)

Proof. Observe that

coth(z/2) =
ez + 1

ez − 1
(5.56)

=

(1+Cψ)2−S2

(1−Cψ)2−S2 + 1

(1+Cψ)2−S2

(1−Cψ)2−S2 − 1
(5.57)

=
(1 + Cψ)2 − S2 + (1− Cψ)2 − S2

(1 + Cψ)2 − S2 − (1− Cψ)2 + S2
(5.58)

=
1 + C2ψ2 − S2

2Cψ
. (5.59)

Then, from the definition of φ,

eφ =
(1 + S)2 − C2ψ2

(1− S)2 − C2ψ2
(5.60)

=
2(1 + S)− 1− C2ψ2 + S2

2(1− S)− 1− C2ψ2 + S2
(5.61)

=
1 + S − Cψ coth(z/2)

1− S − Cψ coth(z/2)
. (5.62)

∴ 1 + S − Cψ coth(z/2) = eφ − Seφ − Cψeφ coth(z/2). (5.63)

∴ 0 = S(1 + eφ) + (1− eφ) + Cψ coth(z/2)(eφ − 1). (5.64)

∴ S = tanh(φ/2)(1− Cψ coth(z/2)). (5.65)

Substituting this back into equation 5.59, I get

tanh2(φ/2)(1− Cψ coth(z/2))2 = 1 + C2ψ2 − 2Cψ coth(z/2). (5.66)

∴ 0 =
1

cosh2(φ/2)
− 2Cψ coth(z/2)

cosh2(φ/2)
+ (1− tanh2(φ/2) coth2(z/2))C2ψ2. (5.67)
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∴ Cψ =

2 coth(z/2)

cosh2(φ/2)
±
√

4 coth2(z/2)

cosh4(φ/2)
− 4(1−tanh2(φ/2) coth2(z/2))

cosh2(φ/2)

2(1− tanh2(φ/2) coth2(z/2))
(5.68)

=
coth(z/2)±

√
coth2(z/2)− cosh2(φ/2) + sinh2(φ/2) coth2(z/2)

cosh2(φ/2)− sinh2(φ/2) coth2(z/2)
(5.69)

=
coth(z/2)±

√
cosh2(φ/2)(coth2(z/2)− 1)

cosh2(φ/2)− sinh2(φ/2) coth2(z/2)
(5.70)

=
coth(z/2)± cosh(φ/2)

sinh(z/2)

cosh2(φ/2)− sinh2(φ/2) coth2(z/2)
(5.71)

=
sinh(z/2)(cosh(z/2)± cosh(φ/2))

cosh2(φ/2) sinh2(z/2)− sinh2(φ/2) cosh2(z/2)
. (5.72)

The denominator simplifies as

cosh2(φ/2) sinh2(z/2)− sinh2(φ/2) cosh2(z/2)

= cosh2(φ/2)(cosh2(z/2)− 1)− (cosh2(φ/2)− 1) cosh2(z/2) (5.73)

= cosh2(z/2)− cosh2(φ/2) (5.74)

= (cosh(z/2) + cosh(φ/2))(cosh(z/2)− cosh(φ/2)). (5.75)

Substituting this back up,

Cψ =
sinh(z/2)

cosh(z/2)∓ cosh(φ/2)
. (5.76)

From the asymptotics - see definition 5.7 - of S and ψ, φ→ ∞, S → 1− m
2rn−3 and ψ → − q

rn−3

near spatial infinity.

∴ z = ln

(
(1 + Cψ)2 − S2

(1− Cψ)2 − S2

)
(5.77)

→ ln

(
(1− Cq/rn−3)2 − (1−m/2rn−3)2

(1 + Cq/rn−3)2 − (1−m/2rn−3)2

)
(5.78)

→ ln

(
m− 2Cq

m+ 2Cq

)
. (5.79)

∴ z is negative when the electric charge is positive.
Hence, to get ψ → −q/rn−3 < 0 in equation 5.76 when q > 0, I need to pick the + in ∓, since
cosh(φ/2) dominates in the denominator.

∴ Cψ =
sinh(z/2)

cosh(z/2) + cosh(φ/2)
. (5.80)

Substituting this back into equation 5.65, I get

S = tanh(φ/2)

(
1− coth(z/2)

sinh(z/2)

cosh(φ/2) + cosh(z/2)

)
(5.81)

=
tanh(φ/2)(cosh(φ/2) + cosh(z/2)− cosh(z/2))

cosh(φ/2) + cosh(z/2)
(5.82)

=
sinh(φ/2)

cosh(φ/2) + cosh(z/2)
, (5.83)

which completes the proof. □
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Definition 5.10 (Conformal scaling, h′). Define a conformally scaled metric, h′ = Ω2h, where

Ω =

(
2 cosh(z/2)

cosh(z/2) + cosh(φ/2)

)1/(n−3)

. (5.84)

Note that cosh(x) ≥ 1 means Ω is manifestly smooth and non-zero.

Lemma 5.11. In terms of the old variables,

Ω = (1− S2 + C2ψ2)1/(n−3). (5.85)

Proof. By lemma 5.9,

1− S2 + C2ψ2

= 1−
(

sinh(φ/2)

cosh(φ/2) + cosh(z/2)

)2

+

(
sinh(z/2)

cosh(φ/2) + cosh(z/2)

)2

(5.86)

=
cosh2(φ/2) + cosh2(z/2) + 2 cosh(φ/2) cosh(z/2)− sinh2(φ/2) + sinh2(z/2)

(cosh(φ/2) + cosh(z/2))2
(5.87)

=
1 + cosh2(z/2) + 2 cosh(φ/2) cosh(z/2) + cosh2(z/2)− 1

(cosh(φ/2) + cosh(z/2))2
(5.88)

=
2 cosh(z/2)

cosh(z/2) + cosh(φ/2)
, (5.89)

which matches equation 5.84. □

Theorem 5.12. In terms of φ, z and h′, equations 5.44 and 5.45 are equivalent to

□(h′)φ =
1

2
tanh(z/2)∇(h′)

i (φ)∇(h′)i(z) +
1

2
coth(φ/2)∇(h′)

i (z)∇(h′)i(z) and (5.90)

□(h′)z =
1

2
coth(φ/2)∇(h′)

i (φ)∇(h′)i(z) +
1

2
tanh(z/2)∇(h′)

i (z)∇(h′)i(z). (5.91)

Proof. The proof is so tedious and uninsightful I have relegated it to appendix A. □

5.1.3 Uniqueness proof

Theorem 5.13. z is a constant.

Proof. First observe that

∇(h′)
i

(
1

sinh(φ/2) cosh(z/2)
∇(h′)iz

)
=

1

sinh(φ/2) cosh(z/2)
□(h′)z − cosh(φ/2)

2 sinh2(φ/2) cosh(z/2)
∇(h′)
i (φ)∇(h′)i(z)

− sinh(z/2)

2 sinh(φ/2) cosh2(z/2)
∇(h′)
i (z)∇(h′)i(z) (5.92)

= 0 by equation 5.91. (5.93)
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Hence, when I integrate this total derivative across Σt, I get

0 =

∫
Σt

∇(h′)
i

(
1

sinh(φ/2) cosh(z/2)
∇(h′)iz

)
dV ′ (5.94)

=

∫
Sn−2
∞

ni
1

sinh(φ/2) cosh(z/2)
∇(h′)i(z) dA′ −

∫
H
ni

1

sinh(φ/2) cosh(z/2)
∇(h′)i(z) dA′ (5.95)

by Stokes’ theorem, where ni is the appropriate normal for each integral. Note that my sign
convention in equation 5.95 means ni points towards infinity in

∫
Sn−2
∞

and ni points into the

domain of outer communication in
∫
H. Also note that since φ = 0 on H, the 2nd surface

integral should be seen as

lim
φ0→0

∫
{φ=φ0}

ni
1

sinh(φ/2) cosh(z/2)
∇(h′)i(z) dA′. (5.96)

The domain of integration, {φ = φ0}, is a regular hypersurface since dφ ̸= 0 on the horizon (I
am only considering non-extremal black holes) and only φ0 infinitesimally close to 0 matters
in taking the limit. Likewise, the first surface integral should be interpreted as

lim
r→∞

∫
Sn−2
r

ni
1

sinh(φ/2) cosh(z/2)
∇(h′)i(z) dA′ (5.97)

and the radius-r spheres are defined by Σt being an asymptotically flat end.
∴ ni ∝ (dr)i in the 1st surface integral. The requirement that h′ijninj = 1 determines the
proportionality constant.
Use the almost Cartesian coordinates, xi (I will always leave the xi indices down by convention),
that arise from Σt being an asymptotically flat end.
∴ (dr)i ∝ xi and thus ni ∝ xi.
By lemma 5.11 and definition 5.7,

Ω = (1− S2 − C2ψ2)1/(n−3) →
(
1−

(
1− m

2rn−3

)2
− C2q2

r2(n−3)

)
→ m1/(n−3)

r
. (5.98)

∴ hij → δij =⇒ h′ij →
m2/(n−3)

r2
δij. (5.99)

∴ h′ijninj = 1 =⇒ ni =
m1/(n−3)

r2
xi. (5.100)

From here, I can now determine the asymptotic behaviour of φ and z at Sn−2
∞ .

(1 + S)2 − C2ψ2 →
(
1 + 1− m

2rn−3

)2
− C2q2

r2(n−3)
→ 4. (5.101)

(1− S)2 − C2ψ2 →
(
1− 1− m

2rn−3

)2
− C2q2

r2(n−3)
→ m2 − 4C2q2

4r2(n−3)
. (5.102)

∴ sinh(φ/2) → 1

2
(eφ/2 − e−φ/2) (5.103)

=
1

2

(√
(1 + S)2 − C2ψ2

(1− S)2 − C2ψ2
−

√
(1− S)2 − C2ψ2

(1 + S)2 − C2ψ2

)
(5.104)

→ 1

2

(√
16

m2 − 4C2q2
r2(n−3) − 0

)
(5.105)

=
2√

m2 − 4C2q2
rn−3. (5.106)

∴
1

sinh(φ/2)
→ 1

2rn−3

√
m2 − 4C2q2. (5.107)
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Similarly, for z I get the following.

(1 + Cψ)2 − S2 →
(
1− Cq

rn−3

)2

−
(
1− m

2rn−3

)2
→ m− 2Cq

rn−3
. (5.108)

(1− Cψ)2 − S2 →
(
1 +

Cq

rn−3

)2

−
(
1− m

2rn−3

)2
→ m+ 2Cq

rn−3
. (5.109)

∴ z → ln

(
m− 2Cq

m+ 2Cq

)
= z1, say. (5.110)

While z takes the constant value, z1, at infinity, what I need for equation 5.97 is ∇(h′)i(z).

∇(h′)
i (z) =

2C(1 + Cψ)∇(h′)
i ψ − 2S∇(h′)

i S

(1 + Cψ)2 − S2
+

2C(1 + Cψ)∇(h′)
i ψ + 2S∇(h′)

i S

(1− Cψ)2 − S2
(5.111)

→ 2rn−3

m− 2Cq

(
(n− 3)Cq

rn−2
− (n− 3)m

rn−2

)
xi
r

+
2rn−3

m+ 2Cq

(
(n− 3)Cq

rn−2
+

(n− 3)m

rn−2

)
xi
r

(5.112)

= −(n− 3)xi
r2

+
(n− 3)xi

r2
(5.113)

= 0. (5.114)

∴ ∇(h′)
i (z) → xif, for some function, f, that′s O(1/r3). (5.115)

Putting the different parts together, the integrand goes as

ni
1

sinh(φ/2) cosh(z/2)
∇(h′)i(z) → m1/(n−3)

r2
xi

1

2rn−3

√
m2 − 4C2q2

1

cosh(z0/2)

r2

m1/(n−3)
fxi

(5.116)

= O(1/rn−2), (5.117)

which goes to zero as r → ∞.

∴ lim
r→∞

∫
Sn−2
r

ni
1

sinh(φ/2) cosh(z/2)
∇(h′)i(z) dA′ = 0 (5.118)

because in the h′ metric, Sn−2
∞ has finite area,

A′
Sn−2
∞

= rn−2ωn−2Ω
n−2 (5.119)

= m(n−2)/(n−3)ωn−2, (5.120)

where ωn−2 is the area of a unit radius Sn−2.
Hence, by equation 5.95, ∫

H
ni

1

sinh(φ/2) cosh(z/2)
∇(h′)i(z) dA′ = 0. (5.121)

ψ and S are both constants on H though - namely ψ0 and 0 - meaning z is also a constant,

z|H = z0 = 2 ln

(
1 + Cψ0

1− Cψ0

)
. (5.122)
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Hence, I can conclude ∫
H
ni

1

sinh(φ/2)
∇(h′)i(z)dA′ = 0. (5.123)

This result is quite useful because of the next divergence I’ll work with. Observe that

∇(h′)
i

(
1

sinh(φ/2)
∇(h′)iz

)
=

1

sinh(φ/2)
□(h′)z − cosh(φ/2)

2 sinh2(φ/2)
∇(h′)
i (φ)∇(h′)i(z) (5.124)

=
tanh(z/2)

2 sinh(φ/2)
||∇(h′)z||2 by equation 5.91, (5.125)

where || · || denotes the natural norm with respect to h′.

∴
∫
Σt

tanh(z/2)

2 sinh(φ/2)
||∇(h′)z||2dV ′

=

∫
Σt

∇(h′)
i

(
1

sinh(φ/2)
∇(h′)iz

)
dV ′ (5.126)

=

∫
Sn−2
∞

ni
1

sinh(φ/2)
∇(h′)i(z)dA′ −

∫
H
ni

1

sinh(φ/2)
∇(h′)i(z)dA′. (5.127)

The H integral is zero by equation 5.123. The Sn−2
∞ integral is zero by equations 5.110 and

5.118.

∴
∫
Σt

tanh(z/2)

2 sinh(φ/2)
||∇(h′)z||2dV ′ = 0. (5.128)

Since the integrand has definite sign at all times, the integral being zero implies ||∇(h′)z||2 = 0

and thus ∇(h′)
i z = 0.

∴ z is a constant. □

Corollary 5.13.1. □(h′)φ = 0.

Proof. z being a constant means ∇(h′)
i (z) = 0 in equation 5.90. □

Corollary 5.13.2. ψ is fully determined in terms of S. In particular,

0 = 1− S2 +
m

q
ψ + C2ψ2. (5.129)

Proof. By equation 5.110 and theorem 5.13,

z = ln

(
m− 2Cq

m+ 2Cq

)
. (5.130)

By definition 5.47, it follows that

ln

(
m− 2Cq

m+ 2Cq

)
= ln

(
(1 + Cψ)2 − S2

(1− Cψ)2 − S2

)
(5.131)

⇐⇒ m− 2Cq

m+ 2Cq
=

(1 + Cψ)2 − S2

(1− Cψ)2 − S2
(5.132)

⇐⇒ m− 2Cmψ +mC2ψ2 −mS2 − 2Cq + 4C2qψ − 2C3qψ2 + 2CqS2

= m+ 2Cmψ +mC2ψ2 −mS2 + 2Cq + 4C2qψ + 2C3qψ2 − 2CqS2 (5.133)

⇐⇒ 0 = 4Cmψ + 4Cq + 4C3qψ2 − 4CqS2 (5.134)

⇐⇒ 0 =
m

q
ψ + 1 + C2ψ2 − S2. (5.135)

□
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Note that corollary 5.13.2 holds in all dimensions, n ≥ 4. Unlike previous work on this or
similar problems - e.g. see [11, 8] and references therein - I did not have to appeal to the
positive energy theorem to derive the the relationship between the electric potential, ψ, and
the lapse, S. As far as I know, for n ≥ 5, this is the first time the positive energy theorem has
not been required to establish this relationship.

Having deduced z to be a constant, the conformal transformation of equation 5.46 is greatly
simplified.

Theorem 5.14. In terms of φ, z and h′, equation 5.46 is equivalent to

R
(h′)
ij =

1

2
coth(φ/2)∇(h′)

i ∇(h′)
j (φ)− 1

4(n− 3)
∇(h′)
i (φ)∇(h′)

j (φ)

+
1

4(n− 3)
h′ij∇

(h′)
k (φ)∇(h′)k(φ). (5.136)

Proof. The proof is still tedious and uninsightful, so I’ve placed it in appendix B. □

Note that despite the presence of the source-free electric field, the system of PDEs to solve
- equation 5.136 & corollary 5.13.1 with φ = 0 on H & φ = ∞ at Sn−2

∞ - are exactly the
same as the one studied in [13] for the vacuum case. The rest of the uniqueness proof then
works similarly2 to [13]. I highlight the salient steps below. One of the novelties of [13] is their
method of detecting spherical symmetry in the solutions. I confirm the same method works
in the present scenario. While I focus below only on the modifications relevant to the black
hole uniqueness problem, one could also follow the methods of [13] to generalise the Willmore-
type inequalities and other results of [13] to the static bounded potentials arising from the
Einstein-Maxwell system.

Lemma 5.15. If ∇(h′)
i ∇(h′)

j φ = 0, then (M, g) is isometric to the Reissner-Nordstrom solution.

Proof. The key ideas of the proof are from [14, 13]. First observe that ∇(h′)
i ∇(h′)

j φ = 0 implies

∇(h′)
i (||∇(h′)φ||2) = ∇(h′)

i (∇(h′)
j (φ)∇(h′)j(φ)) = 2∇(h′)

i ∇(h′)
j (φ)∇(h′)j(φ) = 0. (5.137)

∴ ||∇(h′)φ|| is a constant.

∇(h′)
i φ =

2(1 + S)∇(h′)
i S − 2C2ψ∇(h′)

i ψ

(1 + S)2 − C2ψ2
+

2(1− S)∇(h′)
i S + 2C2ψ∇(h′)

i ψ

(1− S)2 − C2ψ2
(5.138)

→ 1

2

(
(1 + S)∇(h′)

i S − C2ψ∇(h′)
i ψ

)
+

8r2(n−3)

m2 − 4C2q2

(
(1− S)∇(h′)

i S + C2ψ∇(h′)
i ψ

)
(5.139)

by equations 5.101 and 5.102.
As summarised in definition 5.7, S → 1− m

2rn−3 and ψ → − q
rn−3 .

∴ 1 + S → 2, (5.140)

1− S → m

2rn−3
, (5.141)

∇(h′)
i S → (n− 3)m

2rn−1
xi and (5.142)

∇(h′)
i ψ → (n− 3)q

rn−1
xi. (5.143)

2The proof is not quite identical because the presence of the extra field, ψ, changes some of the derivatives,
and can change some of the asymptotics.
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To leading order, equation 5.139 then says

∇(h′)
i φ→ 8r2(n−3)

m2 − 4C2q2

(
m

2rn−3

(n− 3)m

2rn−1
xi − C2 q

rn−3

(n− 3)q

rn−1
xi

)
(5.144)

=
2(n− 3)

r2
xi. (5.145)

From equation 5.99, I then get

||∇(h′)φ||2 = h′ij∇(h′)
i (φ)∇(h′)

j (φ) → r2

m2(n−3)
δij

2(n− 3)

r2
xi
2(n− 3)

r2
xj =

4(n− 3)2

m2/(n−3)
. (5.146)

∴ ||∇(h′)φ|| = 2(n−3)

m1/(n−3) at Sn−2
∞ .

∴ ||∇(h′)φ|| = 2(n−3)

m1/(n−3) everywhere.
As this is non-zero everywhere, I can use φ as a local coordinate, essentially by the implicit
function theorem.
Let {xA}n−1

A=2 be local coordinates on a particular constant φ surface.

∴ dφ ≡ ∇(h′)
i φ is normal to that hypersurface.

Extend xA off that hypersurface by keeping xA constant along flows of (dφ)a.
That way only φ changes along flows of (dφ)a, meaning (dφ)a ∝ (∂/∂φ)a.
∴ There are no dφ-dxA cross terms in the metric.
From the value of ||∇(h′)φ||, I can then conclude that

h′ =
m2/(n−3)

4(n− 3)2
dφ⊗ dφ+ h̃′ABdx

A ⊗ dxB, (5.147)

for some invertible h̃′AB. Then,

0 = ∇(h′)
i ∇(h′)

j φ = ∂i∂jφ− Γ
(h′)k

ji∇
(h′)
k φ = −Γ

(h′)1
ji (5.148)

in the (φ, xA) coordinates.
Choose (i, j) = (A,B).

∴ 0 = Γ
(h′)1

BA =
1

2
h′1i(∂Bh

′
A1 + ∂Ah

′
1B − ∂1h

′
BA) = −2(n− 3)2

m2/(n−3)
∂φh̃

′
AB =⇒ ∂φh̃

′
AB = 0.

(5.149)

∴ h′ =
m2/(n−3)

4(n− 3)2
dφ⊗ dφ+ h̃′|{φ=φ0} for any φ0. (5.150)

Choose φ0 → ∞. Then, h̃′ → m2/(n−3)gSn−2 by equation 5.99. Hence,

h′ =
m2/(n−3)

4(n− 3)2
dφ⊗ dφ+m2/(n−3)gSn−2 . (5.151)

The metric of the physical spacetime - which is what I’m actually interested in - is then

g = −S2dt⊗ dt+ h (5.152)

= −S2dt⊗ dt+
1

Ω2
h′ (5.153)

= −S2dt⊗ dt+
m2/(n−3)

4(n− 3)2Ω2
dφ⊗ dφ+

m2/(n−3)

Ω2
gSn−2 . (5.154)

By equation 5.84, theorem 5.9 and theorem 5.13, S and Ω only depend on φ.
∴ The metric in equation 5.154 is spherically symmetric. Since ||∇(h′)φ|| ≠ 0, the area-radius
function, r = m1/(n−3)/Ω, is non-constant.
∴ By the version of Birkhoff’s theorem applicable here, (M, g) is isometric to the Reissner-
Nordstrom solution. □
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The logical next step after this lemma is to prove that ∇(h′)
i ∇(h′)

j (φ) = 0 is actually true.

Lemma 5.16. Let R(h′,H) be the Ricci scalar of H in the h′ metric and let

κ′ =
4κ

(1− C2ψ2
0)(1 + C2ψ0)1/(n−3)

. (5.155)

Then, ∫
Σt

||∇(h′)∇(h′)φ||2

sinh(φ/2)
dV ′ = κ′

(∫
H
R(h′,H)dA′ − (n− 2)κ′2

4(n− 3)
A′
)
. (5.156)

Proof. First observe that κ′ is the analogue of the surface gravity in the h′ and φ variables. In
particular, since ∇(h)ψ = 0 and S = 0 on H,

∇(h′)
i (φ)∇(h′)i(φ)|H

=

(
2(1 + S)∇(h)

i S − 2C2ψ∇(h)
i ψ

(1 + S)2 − C2ψ2
+

2(1− S)∇(h)
i S + 2C2ψ∇(h)

i ψ

(1− S)2 − C2ψ2

)∣∣∣∣
H

1

Ω2|H

×
(
2(1 + S)∇(h)iS − 2C2ψ∇(h)iψ

(1 + S)2 − C2ψ2
+

2(1− S)∇(h)iS + 2C2ψ∇(h)iψ

(1− S)2 − C2ψ2

) ∣∣∣∣
H

(5.157)

=
16∇(h)

i (S)∇(h)i(S)|H
1− C2ψ2

0

1

(1 + C2ψ2
0)

2/(n−3)
(5.158)

=
16κ2

(1− C2ψ2
0)(1 + C2ψ2

0)
2/(n−3)

(5.159)

= κ′2. (5.160)

Next, observe that

∇(h′)
i

(
1

sinh(φ/2)
∇(h′)i(||∇(h′)φ||2)

)
= 2∇(h′)

i

(
1

sinh(φ/2)
∇(h′)i∇(h′)j(φ)∇(h′)

j (φ)

)
(5.161)

= − cosh(φ/2)

sinh2(φ/2)
∇(h′)
i ∇(h′)

j (φ)∇(h′)i(φ)∇(h′)j(φ) +
2

sinh(φ/2)
∇(h′)
i ∇(h′)j∇(h′)i(φ)∇(h′)

j (φ)

+
2

sinh(φ/2)
||∇(h′)∇(h′)φ||2 (5.162)

= − cosh(φ/2)

sinh2(φ/2)
∇(h′)
i ∇(h′)

j (φ)∇(h′)i(φ)∇(h′)j(φ) +
2

sinh(φ/2)
[∇(h′)

i ,∇(h′)j]∇(h′)i(φ)∇(h′)
j (φ)

+
2

sinh(φ/2)
||∇(h′)∇(h′)φ||2 by corollary 5.13.1 (5.163)

= − cosh(φ/2)

sinh2(φ/2)
∇(h′)
i ∇(h′)

j (φ)∇(h′)i(φ)∇(h′)j(φ) +
2

sinh(φ/2)
R

(h′)
ij ∇(h′)i(φ)∇(h′)i(φ)

+
2

sinh(φ/2)
||∇(h′)∇(h′)φ||2 (5.164)

55



Then, by theorem 5.14,

∇(h′)
i

(
1

sinh(φ/2)
∇(h′)i(||∇(h′)φ||2)

)
= − cosh(φ/2)

sinh2(φ/2)
∇(h′)
i ∇(h′)

j (φ)∇(h′)i(φ)∇(h′)j(φ) +
2

sinh(φ/2)
||∇(h′)∇(h′)φ||2

+
2

sinh(φ/2)

(
1

2
coth(φ/2)∇(h′)

i ∇(h′)
j (φ)− 1

4(n− 3)
∇(h′)
i (φ)∇(h′)

j (φ)

+
1

4(n− 3)
h′ij∇

(h′)
k (φ)∇(h′)k(φ)

)
∇(h′)i(φ)∇(h′)j(φ) (5.165)

=
2

sinh(φ/2)
||∇(h′)∇(h′)φ||2. (5.166)

Thus, by Stokes’ theorem,∫
Σt

2

sinh(φ/2)
||∇(h′)∇(h′)φ||2dV ′

=

∫
Sn−2
∞

ni
1

sinh(φ/2)
∇(h′)i(||∇(h′)φ||2)dA′ −

∫
H
ni

1

sinh(φ/2)
∇(h′)i(||∇(h′)φ||2)dA′. (5.167)

On H, by equation 5.160, ni =
1
κ′
∇(h′)
i (φ).

∴
∫
H
ni

1

sinh(φ/2)
∇(h′)i(||∇(h′)φ||2)dA′ =

∫
H

2∇(h′)
i ∇(h′)

j (φ)∇(h′)i(φ)∇(h′)i(φ)

κ′ sinh(φ/2)
dA′. (5.168)

Meanwhile at Sn−2
∞ , ∇(h′)

i (||∇(h′)φ||2) is O(1/r) by equation 5.146, ni =
m1/(n−3)

r2
xi by equation

5.100, h′ij =
m2/(n−3)

r2
δij by equation 5.99, the area of Sn−2

∞ is finite by equation 5.120 and φ = ∞.

∴
∫
Sn−2
∞

ni
1

sinh(φ/2)
∇(h′)i(||∇(h′)φ||2)dA′ = 0. (5.169)

Now, equation 5.167 says∫
Σt

||∇(h′)∇(h′)φ||2

sinh(φ/2)
dV ′ = −

∫
H

∇(h′)
i ∇(h′)

j (φ)∇(h′)i(φ)∇(h′)i(φ)

κ′ sinh(φ/2)
dA′. (5.170)

By the Gauss-Codacci equations, R(h′,H), the Ricci scalar of H, is

R(h′,H) = R(h′) − 2R
(h′)
ij ninj +K(h′)2 −K

(h′)
ij K(h′)ij, (5.171)

where K
(h′)
ij is H’s extrinsic curvature.

Upon a conformal transformation, the extrinsic curvature transforms as [15]

K
(h′)
ij = ΩK

(h)
ij + nk(h

′
ij − ninj)∇(h′)k(ln(Ω)). (5.172)

By corollary 2.13.1, K
(h)
ij is zero3.

Meanwhile, equation A.20 with z constant and φ = 0 on H means ∇(h′)k(ln(Ω)) = 0 on H too.

∴ K
(h′)
ij = 0 on H.

∴ R(h′,H) = R(h′) − 2R
(h′)
ij ninj (5.173)

= R(h′) − 2

κ′2
R

(h′)
ij ∇(h′)i(φ)∇(h′)j(φ). (5.174)

3Corollary 2.13.1 only says KAB = 0, but in the Israel coordinates used there, K0i = 0 automatically, so
the whole tensor is indeed zero.

56



By equation 5.136 and corollary 5.13.1, R(h′) = n−2
4(n−3)

∇(h′)
i (φ)∇(h′)i(φ), which equals (n−2)κ′2

4(n−3)

on H.
Also from equation 5.136, R

(h′)
ij ∇(h′)i(φ)∇(h′)j(φ) = 1

2
coth(φ/2)∇(h′)

i ∇(h′)
j (φ)∇(h′)i(φ)∇(h′)j(φ).

∴
∇(h′)
i ∇(h′)

j (φ)∇(h′)i(φ)∇(h′)j(φ)

sinh(φ/2)
=

2R
(h′)
ij ∇(h′)i(φ)∇(h′)j(φ)

cosh(φ/2)
(5.175)

=
κ′2

cosh(φ/2)

(
R(h′) −R(h′,H)

)
(5.176)

=
κ′2

cosh(φ/2)

(
(n− 2)κ′2

4(n− 3)
−R(h′,H)

)
. (5.177)

Substituting this back into equation 5.170 and noting that φ = 0 on H,∫
Σt

||∇(h′)∇(h′)φ||2

sinh(φ/2)
dV ′ = κ′

∫
H

(
R(h′,H) − (n− 2)κ′2

4(n− 3)

)
dA′ (5.178)

= κ′
(∫

H
R(h′,H)dA′ − (n− 2)κ′2

4(n− 3)
A′
)
, (5.179)

which is the claimed identity. □

Corollary 5.16.1. If
∫
HR

(h′,H)dA′ ≤ (n−2)κ′2

4(n−3)
A′, then the spacetime is isometric to Reissner-

Nordstrom.

Proof. The LHS of equation 5.156 is ≥ 0, but if the assumption of the corollary is true, the
RHS would be ≤ 0.

∴ Equation 5.156 can only hold if
∫
Σt

||∇(h′)∇(h′)φ||2
sinh(φ/2)

dV ′ = 0.

Since the integrand is non-negative and continuous, it must be that ||∇(h′)∇(h′)φ||2 = 0.

∴ ∇(h′)
i ∇(h′)

j φ = 0.
The result then follows from lemma 5.15. □

The inability to actually do the integral,
∫
HR

(h′,H)dA′, in higher dimensions is a shortcoming of
[13]’s method that I was not able to ameliorate. However, like [13], I can rephrase the inequality
on
∫
HR

(h′,H)dA′ in a potentially more useful form and I can eliminate the issue entirely when
n = 4.

Lemma 5.17. The mass parameter, m, satisfies both

m ≤ 1

ωn−2

√
A′

(n− 2)(n− 3)

∫
H
R(h′,H)dA′ and m ≥

(
A′

ωn−2

)(n−3)/(n−2)

, (5.180)

where ωn−2 is the area of a unit Sn−2.

Proof. First I’ll prove the analogue of the Smarr relation in the variables deployed here. By
corollary 5.13.1, □(h′)φ = 0.

∴ 0 =

∫
Σt

□(h′)(φ)dV ′ (5.181)

=

∫
Sn−2
∞

ni∇(h′)i(φ)dA′ −
∫
H
ni∇(h′)i(φ)dA′. (5.182)
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From equation 5.160, ni =
1
κ′
∇(h′)
i φ on H.

∴
∫
H
ni∇(h′)i(φ)dA′ =

∫
H

1

κ′
∇(h′)
i (φ)∇(h′)i(φ)dA′ =

∫
H
κ′dA′ = κ′A′. (5.183)

For the other surface integral, equations 5.100, 5.99 and 5.145 say∫
Sn−2
∞

ni∇(h′)i(φ)dA′

=

∫
Sn−2
∞

m1/(n−3)

r2
xi

r2

m2/(n−3)
δij

2(n− 3)

r2
xj

√(
m2/(n−3)

r2

)n−2

rn−2dωn−2 (5.184)

= 2m(n− 3)ωn−2. (5.185)

Hence, the new Smarr relation is

κ′A′ = 2m(n− 3)ωn−2. (5.186)

Then, by equation 5.156,

0 ≤
∫
H
R(h′,H)dA′ − (n− 2)κ′2

4(n− 3)
A′ (5.187)

=

∫
H
R(h′,H)dA′ − (n− 2)A′

4(n− 3)

(
2m(n− 3)ωn−2

A′

)2

by equation 5.186. (5.188)

∴ m ≤ 1

ωn−2

√
A′

(n− 2)(n− 3)

∫
H
R(h′,H)dA′. (5.189)

The other inequality requires a more scenic tour.
First observe that since □(h′)φ = 0 now,

∇(h′)
i

(
1

sinh(φ/2)
||∇(h′)φ||2∇(h′)iφ

)
=

1

sinh(φ/2)

(
2∇(h′)

i ∇(h′)
j (φ)∇(h′)i(φ)∇(h′)j(φ)− 1

2
coth(φ/2)||∇(h′)φ||4

)
. (5.190)

Hence, by Stokes’ theorem, for any φ0 such that {φ = φ0} is a regular set,∫
{φ≥φ0}

1

sinh(φ/2)

(
2∇(h′)

i ∇(h′)
j (φ)∇(h′)i(φ)∇(h′)j(φ)− 1

2
coth(φ/2)||∇(h′)φ||4

)
dV ′

=

∫
Sn−2
∞

ni
sinh(φ/2)

||∇(h′)φ||2∇(h′)i(φ)dA′ −
∫
{φ=φ0}

ni
sinh(φ/2)

||∇(h′)φ||2∇(h′)i(φ)dA′. (5.191)

The domains of integration are valid, as follows. View φ as a surjective function,
φ : M → [0,∞). By Sard’s theorem, the set of regular values in [0,∞) is dense. Thus,
although φ0 cannot be chosen to be any number in [0,∞), it can be chosen arbitrarily close to
any desired number in [0,∞), which suffices for my purposes.

The normal to {φ = φ0} is ni =
1

||∇(h′)φ||∇
(h′)
i φ, so

∫
{φ=φ0}

ni
sinh(φ/2)

||∇(h′)φ||2∇(h′)i(φ)dA′ =

∫
{φ=φ0}

||∇(h′)φ||3

sinh(φ/2)
dA′. (5.192)
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The integral at infinity is the same as equation 5.185, except that there is a sinh(φ/2) = ∞
suppression in the integrand’s denominator and the ||∇(h′)φ||2 in the numerator takes a finite
value by equation 5.146.
∴ The integral at infinity is zero.
Hence we can define a new function, Φ(φ0) as

Φ(φ0) =

∫
{φ=φ0}

||∇(h′)φ||3dA′ (5.193)

= − sinh(φ0/2)

∫
{φ≥φ0}

1

sinh(φ/2)

×
(
2∇(h′)

i ∇(h′)
j (φ)∇(h′)i(φ)∇(h′)j(φ)− 1

2
coth(φ/2)||∇(h′)φ||4

)
dV ′ (5.194)

The coarea formula allows the volume integral to be re-written as an integral over constant φ
surface integrals4. It says

Φ(φ0) = − sinh(φ0/2)

∫ ∞

φ0

∫
{φ=τ}

1

||∇(h′)φ|| sinh(φ/2)

×
(
2∇(h′)

i ∇(h′)
j (φ)∇(h′)i(φ)∇(h′)j(φ)− 1

2
coth(φ/2)||∇(h′)φ||4

)
dA′dτ (5.195)

= sinh(φ0/2)

∫ ∞

φ0

(
cosh(τ/2)

2 sinh2(τ/2)
Φ(τ)

− 2

∫
{φ=τ}

∇(h′)
i ∇(h′)

j (φ)∇(h′)i(φ)∇(h′)j(φ)

||∇(h′)φ|| sinh(φ/2)
dA′
)
dτ. (5.196)

Then, by the fundamental theorem of calculus and the product rule,

Φ′(φ0) =
1

2
cosh(φ0/2)

∫ ∞

φ0

(
cosh(τ/2)

2 sinh2(τ/2)
Φ(τ)

− 2

∫
{φ=τ}

∇(h′)
i ∇(h′)

j (φ)∇(h′)i(φ)∇(h′)j(φ)

||∇(h′)φ|| sinh(φ/2)
dA′
)
dτ − sinh(φ0/2)

cosh(φ0/2)

2 sinh2(φ0/2)
Φ(φ0)

+ 2 sinh(φ0/2)

∫
{φ=φ0}

∇(h′)
i ∇(h′)

j (φ)∇(h′)i(φ)∇(h′)j(φ)

||∇(h′)φ|| sinh(φ/2)
dA′ (5.197)

=
1

2
coth(φ0/2)Φ(φ0)−

1

2
coth(φ0/2)Φ(φ0)

+ 2

∫
{φ=φ0}

∇(h′)
i ∇(h′)

j (φ)∇(h′)i(φ)∇(h′)j(φ)

||∇(h′)φ||
dA′ (5.198)

= 2

∫
{φ=φ0}

∇(h′)
i ∇(h′)

j (φ)∇(h′)i(φ)∇(h′)j(φ)

||∇(h′)φ||
dA′. (5.199)

From the exact same logic that went into deriving equation 5.170, it follows that this last
integral can be re-written as

Φ′(φ0) = −2 sinh(φ0/2)

∫
{φ≥φ0}

||∇(h′)∇(h′)φ||2

sinh(φ/2)
dV ′ (5.200)

≤ 0. (5.201)

4Again, the Sard’s theorem argument means the expression can be made sense of even though not every
constant φ surface may be regular.
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∴ Φ(φ1) ≥ Φ(φ2) whenever φ1 ≤ φ2.
∴ Φ(0) ≥ Φ(∞).
Using equations 5.160, 5.146 and 5.120, it follows that

Φ(0) =

∫
{φ=0}

||∇(h′)φ||3dA′ =

∫
H
||∇(h′)φ||3dA′ = κ′3A′ and (5.202)

Φ(∞) =

∫
{φ=∞}

||∇(h′)φ||3dA′ =

∫
Sn−2
∞

||∇(h′)φ||3dA′ =
8(n− 3)3

m3/(n−3)
m(n−2)/(n−3)ωn−2. (5.203)

∴ κ′3A′ ≥ 8(n− 3)3m(n−5)/(n−3)ωn−2. (5.204)

Using equation 5.186, this inequality says

8m3(n− 3)3(ωn−2)
3

A′3 A′ ≥ 8(n− 3)3m(n−5)/(n−3)ωn−2 (5.205)

⇐⇒ m ≥
(

A′

ωn−2

)(n−3)/(n−2)

. (5.206)

This is exactly the second inequality claimed. □

Corollary 5.17.1. If∫
H
R(h′,H)dA′ ≤ (n− 2)(n− 3)A′(n−4)/(n−2)(ωn−2)

2/(n−2), (5.207)

then the spacetime is isometric to Reissner-Nordstrom.

Proof. The assumption implies that

1

ωn−2

√
A′

(n− 2)(n− 3)

∫
H
R(h′,H)dA′

≤ 1

ωn−2

√
A′

(n− 2)(n− 3)
(n− 2)(n− 3)A′(n−4)/(n−2)(ωn−2)2/(n−2) (5.208)

=
1

ωn−2

(A′2(n−3)/(n−2)(ωn−2)
2/(n−2))1/2 (5.209)

=

(
A′

ωn−2

)(n−3)/(n−2)

. (5.210)

∴ Both inequalities in lemma 5.17 must actually be equalities.

From the proof of lemma 5.17, equality occurs if and only if ∇(h′)
i ∇(h′)

j φ = 0 everywhere; the
latter condition implies the metric is isometric to Reissner-Nordstrom by lemma 5.15. □

Theorem 5.18. When n = 4, the solution is isometric to Reissner-Nordstrom.

Proof. When n = 4, the diagnostic of corollary 5.17.1 is
∫
HR

(h′,H)dA′ ≤ 8π.
Since I’m assuming the event horizon is connected and H is 2D when n = 4,∫

H
R(h′,H)dA′ = 4πχ(H) (5.211)

by the Gauss-Bonnet theorem.
The Euler characteristic of a closed 2-surface is at most 2, so one indeed gets∫
HR

(h′,H)dA′ ≤ 8π. □
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5.2 With magnetic fields

In this section I’ll now drop the assumption in definition 5.1 that ιk ⋆ F = 0, i.e. Fab is now
allowed to have magnetic components as well.

Lemma 5.19. The electromagnetic field is F = dψ ∧ dt + 1
2
Fijdx

i ∧ dxj, for some ψ and Fij
such that ∂tψ = 0 and ∂tFij = 0.

Proof. The proof of lemma 5.2 carries through identically except that ιk ⋆ F = 0 cannot be
used to set Fij to zero. □

Theorem 5.20. The equations of motion are now

S□(h)S = C2∇(h)
i (ψ)∇(h)i(ψ) +

S2

n− 2
FijF

ij, (5.212)

0 = ∇(h)j(SFji), (5.213)

0 = Fij∇(h)jψ, (5.214)

0 = ∂[kFij] = ∇(h)
[k Fij], (5.215)

0 = ∇(h)
i

(
1

S
∇(h)iψ

)
and (5.216)

R
(h)
ij =

1

S
∇(h)
i ∇(h)

j S +
C2

(n− 3)S2
hij∇(h)

k (ψ)∇(h)k(ψ)− (n− 2)C2

(n− 3)S2
∇(h)
i (ψ)∇(h)

j (ψ)

+ 2F k
i Fjk −

1

n− 2
hijF

klFkl, (5.217)

where C =
√

2(n−3)
n−2

.

Proof. I will follow the logic of theorem 5.3 and borrow its calculations liberally. This time,

F abFab = 2F i0Fi0 + F ijFij = − 2

S2
∇(h)i(ψ)∇(h)

i (ψ) + F ijFij. (5.218)

Applying lemma 2.4 and equation 5.1, from the 0− 0 component of Rµν , I get

S□(h)S = 2F µ
0 F0µ −

1

n− 2
g00F

cdFcd (5.219)

= 2F i
0 F0i −

1

n− 2
(−S2)

(
− 2

S2
∇(h)i(ψ)∇(h)

i (ψ) + F ijFij

)
(5.220)

= C2∇(h)i(ψ)∇(h)
i (ψ) +

S2

n− 2
borrowing from the previous calculation. (5.221)

Next, the 0− i components say

0 = 2F µ
0 Fiµ −

1

n− 2
g0iF

abFab (5.222)

= 2F j
0 Fij − 0 (5.223)

= −2∇(h)j(ψ)Fij ⇐⇒ Fij∇(h)j(ψ) = 0. (5.224)

61



Lastly, the i− j components say

R
(h)
ij =

1

S
∇(h)
i ∇(h)

j S + 2F µ
i Fjµ −

1

n− 2
gijF

abFab (5.225)

=
1

S
∇(h)
i ∇(h)

j S + 2F 0
i Fj0 + 2F k

i Fjk −
1

n− 2
hij

(
− 2

S2
∇(h)k(ψ)∇(h)

k (ψ) + F klFkl

)
(5.226)

=
1

S
∇(h)
i ∇(h)

j S − (n− 2)C2

(n− 3)S2
∇(h)
i (ψ)∇(h)

j (ψ) +
C2

(n− 3)S2
hij∇(h)

k (ψ)∇(h)k(ψ)

+ 2F k
i Fjk −

1

n− 2
hijF

klFkl borrowing from the previous calculation. (5.227)

Meanwhile, the Maxwell equation says

0 = ∇νFνµ (5.228)

= ∇0F0µ +∇iFiµ (5.229)

= − 1

S2
∇0F0µ + hij∇jFiµ (5.230)

= − 1

S2
∂tF0µ +

1

S2
Γν00Fνµ +

1

S2
Γνµ0F0ν + hij∂jFiµ − hijΓνijFνµ − hijΓνµjFiν (5.231)

= 0 +
1

S2
Γν00Fνµ +

1

S2
Γiµ0F0i + hij∂jFiµ − hijΓνijFνµ − hijΓνµjFiν . (5.232)

Using lemma 2.5, I then get

0 =
1

S
∇(h)i(S)Fiµ +

1

S
∇(h)(S)δµ0F0i + hij∂jFiµ − hijΓkijFkµ − hijΓνµjFiν . (5.233)

Noting Γk0j = 0, it’s seen that when µ = 0, one gets the exact same equation as in theorem

5.3 earlier, so the µ = 0 case again says ∇(h)
i ( 1

S
∇(h)iψ) = 0.

For the µ = i case, I get

0 =
1

S
∇(h)j(S)Fji + hjk∂kFji − hjkΓljkFli − hjkΓνikFjν (5.234)

=
1

S
∇(h)j(S)Fji + hjk∂kFji − hjkΓ

(h)l
jkFli − hjkΓ

(h)l
ikFjl by lemma 2.5 (5.235)

=
1

S
∇(h)j(S)Fji +∇(h)jFji. (5.236)

∴ 0 = ∇(h)j(S)Fji + S∇(h)jFji = ∇(h)j(SFji). (5.237)

Finally, dF = 0 =⇒ 0 = d(dψ ∧ dt+ 1
2
Fijdx

i ∧ dxj) =⇒ ∂[kFij] = ∇(h)
[k Fij] = 0. □

Next, I once again need boundary conditions.
S = 0 on H for the same reasons as before.
The steps that build to proving ∇(h)

i ψ = 0 on H are unaffected by the presence of the magnetic

field, except during the proof of corollary 5.5. Instead of □(h)S = C2

S
∇(h)
i (ψ)∇(h)i(ψ), this time

I have □(h)S = C2

S
∇(h)
i (ψ)∇(h)i(ψ) + S

n−2
FijF

ij. However, because S = 0 on H, the extra term
makes no difference and the same reasoning can be applied again.
As for the outer boundary, Sn−2

∞ , I once again assume the asymptotics of definition 5.4. Fij will
also be assumed to decay to zero at Sn−2

∞ , but the details of the decay will not be important
for what follows.
Note that since the boundary conditions are the same, the conformal transformations of section
5.1.2 are all still well-defined, for the same reasons as before.
Finally, since S

n−2
FijF

ij ≥ 0 and equation 5.45 is unchanged upon introducing Fij, the proof
of lemma 5.6 still works analogously.
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Definition 5.21 (Problem summary). The problem studied in this section is summarised by
the equations,

S□(h)S = C2∇(h)
i (ψ)∇(h)i(ψ) +

S2

n− 2
FijF

ij, (5.238)

0 = ∇(h)j(SFji), (5.239)

0 = Fij∇(h)jψ, (5.240)

0 = ∇(h)
i

(
1

S
∇(h)iψ

)
and (5.241)

R
(h)
ij =

1

S
∇(h)
i ∇(h)

j S +
C2

(n− 3)S2
hij∇(h)

k (ψ)∇(h)k(ψ)− (n− 2)C2

(n− 3)S2
∇(h)
i (ψ)∇(h)

j (ψ)

+ 2F k
i Fjk −

1

n− 2
hijF

klFkl, (5.242)

where C =
√

2(n−3)
n−2

and the boundary conditions are S = 0 on H, ψ = ψ0 (a constant) on H,

∇(h)
i ψ = 0 on H, 0 ≤ S < 1 everywhere, S → 1− m

2rn−3 at Sn−2
∞ and ψ → − q

rn−3 at Sn−2
∞ .

5.2.1 n = 4

When n = 4, the fact that the Hodge dual of a 2-form is again a 2-form can be leveraged to
very quickly redeploy the work of the previous sections.

Definition 5.22 (Electric and magnetic 1-forms). Define the electric and magnetic 1-form
components of F by Ea = −kbFba and Ba = kb(⋆F )ba.

Lemma 5.23. E = dψ and B = adψ for some function, ψ and constant, a.

Proof. The proof that E = dψ is unchanged from the corresponding reasoning in lemma 5.2.
The rest is based off proposition 9.8 in [15].
k ∧ dk = 0 because static requires ka to be hypersurface orthogonal.

∴ 0 = d(⋆(k ∧ dk)) = − ⋆2 d(⋆(k ∧ dk)). (5.243)

∴ 0 = d†(k ∧ dk). (5.244)

Switching to abstract indices and using that ka is Killing, this last equation says

0 = ∇c(ka∇bkc + kb∇cka + kc∇akb) (5.245)

= ∇c(ka)∇bkc + ka∇c∇bkc +∇c(kb)∇cka + kb∇c∇cka +∇c(kc)∇akb + kc∇c∇akb (5.246)

= ∇c(ka)∇bkc − ka∇c∇ckb −∇b(k
c)∇cka + kb∇c∇cka + 0 + kcR

dc
abkd (5.247)

= −kaRdc
cbkd + kbR

dc
cakd (5.248)

= kaRbck
c − kbRack

c. (5.249)

With the energy momentum tensor considered here, Rab = 2F c
a Fbc − 1

2
gabF

cdFcd.

∴ 0 = kakc

(
2FbdF

cd − 1

2
δ c
b F

deFde

)
− kbkc

(
2FadF

cd − 1

2
δ c
a F

deFde

)
(5.250)

= 2kakcFbdF
cd − 1

2
kakbF

bcFbc − 2kbkcFadF
cd +

1

2
kbkaF

bcFbc (5.251)

= 2kakcFbdF
cd − 2kbkcFadF

cd. (5.252)
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Then, observe that

(⋆(E ∧B))ab =
1

2
εcdabE

cBd (5.253)

= −1

4
εcdabkeF

eckfε
ghfdFgh (5.254)

=
3

2
δg[cδ

h
aδ

f
b]keF

eckfFgh (5.255)

=
1

2

(
δfbδ

g
[cδ

h
a] + δfcδ

g
[aδ

h
b] + δfaδ

g
[bδ

h
c]

)
keF

eckfFgh (5.256)

=
1

2
(kbkdF

dcFca + kckdF
dcFab + kakdF

dcFbc) (5.257)

=
1

2
(kbkdF

dcFca + kakdF
dcFbc) (5.258)

= 0 by equation 5.252. (5.259)

∴ E ∧ B = 0 ⇐⇒ E ∝ B ⇐⇒ E = aB for some function, a. It remains to be shown that a
is a constant.
To that end, I’ll first note that B is also a closed form because

dB = (ιk ⋆ F ) (5.260)

= Lk ⋆ F − ιk(d ⋆ F ) (5.261)

by Cartan’s magic formula. In this last line, d⋆F = 0 is Maxwell’s equation and since ka = ∂/∂t
& everything is time independent, Lk ⋆ F = ∂t ⋆ F = 0. Then,

dE = 0 =⇒ 0 = (adB) = da ∧B. (5.262)

∴ da ∝ B ∝ E.
I’ll need a few more obscure identities before the denouement.
Let N = kaka. When adapted coordinates are valid, N = −S2. From k ∧ dk = 0,

0 = ka∇bkc + kb∇cka + kc∇akb. (5.263)

∴ 0 = kcka∇bkc + kckb∇cka +N∇akb. (5.264)

∴ ∇akb = − 1

N
(kcka∇bkc + kckb∇cka). (5.265)

Using this, I get

∇a

(
1

N
Ea

)
= − 1

N2
∇a(N)Ea +

1

N
∇aEa (5.266)

=
2

N2
kb∇a(kb)kcF

ca − 1

N
∇a(kbF

ba) (5.267)

=
2

N2
kb∇a(kb)kcF

ca − 1

N
F ba∇akb − 0 by Maxwell′s equation (5.268)

=
2

N2
kb∇a(kb)kcF

ca +
2

N2
F bakcka∇bkc by equation 5.265 (5.269)

= 0. (5.270)
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Similarly, for B,

∇a

(
1

N
Ba

)
= − 1

N2
∇a(N)Ba +

1

N
∇aBa (5.271)

= − 2

N2
Bakb∇akb +

1

2N
∇a

(
kbε

cdbaFcd
)

(5.272)

= − 2

N2
Bakb∇akb +

1

2N
Fcdε

cdba∇akb as dF = 0 =⇒ εcdba∇aFcd = 0 (5.273)

= − 2

N2
Bakb∇akb −

1

N2
Fcdε

cdbakeka∇bke by equation 5.265 (5.274)

= 0. (5.275)

Putting these last two identities together,

0 = ∇a

(
1

N
Ea

)
(5.276)

= ∇a
( a
N
Ba

)
(5.277)

=
1

N
Ba∇a(a). (5.278)

∴ If ∇aa ̸= 0, then ∇aa = da is both parallel and perpendicular to B.
This is only possible if ∇aa is null.
Then Ba must be null too.
However, theorem 2.2 says ka is timelike in the domain of outer communication and so
kaBa =

1
2
εcdbaF

cdkbka = 0 would imply Ba is spacelike.
Hence, it must be that ∇aa = 0 to begin with. □

Note that when E = 0, it still holds that B = dϕ, for some function, ϕ, because of topological
censorship and the dB = 0 result in the proof. In that case, I can rename ϕ as aψ for my
favourite non-zero constant, a. The next theorem also works fine when E = 0, except that
instead of

√
1 + a2, one would just get a.

Theorem 5.24. The problem considered in this section - i.e. definition 5.21 - reduces to the
one previously considered - i.e. definition 5.7 - but with ψ replaced by

√
1 + a2ψ.

Proof. The boundary conditions in definition 5.7 and 5.21 are the same, so it only remains to
check that the equations of motion transform as claimed.
By definition, Bµ = kν(⋆F )νµ = (⋆F )0µ.
∴ B0 = 0 and

Bi = (⋆F )0i =
1

2
εµν0iF

µν =
1

2
εjk0iF

jk =
S

2
ε
(h)
ijkF

jk. (5.279)

∴ Fij =
1

S
ε
(h)
ijkB

k (5.280)

=
a

S
ε
(h)
ijk∇

(h)k(ψ) by lemma 5.23. (5.281)

Then, equation 5.238 becomes

S□(h)S = ∇(h)
i (ψ)∇(h)i(ψ) +

S2

2

a2

S2
ε
(h)
ijk∇

(h)k(ψ)ε(h)ijl∇(h)
l (ψ) (5.282)

= (1 + a2)∇(h)
i (ψ)∇(h)i(ψ), (5.283)
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which is equation 5.44 with ψ →
√
1 + a2ψ.

Next, equation 5.239 is identically satisfied because

∇(h)j(SFji) = ∇(h)j(aε
(h)
jik∇

(h)kψ) (5.284)

= −aε(h)ijk∇
(h)j∇(h)kψ (5.285)

= 0 as ∇(h)j∇(h)kψ = ∇(h)k∇(h)jψ for a scalar. (5.286)

Likewise, equation 5.240 is also identically satisfied because

Fij∇(h)j(ψ) =
a

S
ε
(h)
ijk∇

(h)k(ψ)∇(h)j(ψ) = 0. (5.287)

Equation 5.241 is the same as equation 5.45 and equation 5.242 now reads

R
(h)
ij =

1

S
∇(h)
i ∇(h)

j S +
1

S2
hij∇(h)

k (ψ)∇(h)k(ψ)− 2

S2
∇(h)
i (ψ)∇(h)

j (ψ)

+
2a2

S2
ε kli ∇(h)

l (ψ)εjkm∇(h)m(ψ)− a2

2S2
hijε

klm∇(h)
m (ψ)εkln∇(h)n(ψ) (5.288)

=
1

S
∇(h)
i ∇(h)

j S +
1

S2
hij∇(h)

k (ψ)∇(h)k(ψ)− 2

S2
∇(h)
i (ψ)∇(h)

j (ψ)

+
4a2

S2
∇(h)
l (ψ)∇(h)m(ψ)hinδ

n
[jδ

l
m] −

a2

S2
hij∇(h)

k (ψ)∇(h)k(ψ) (5.289)

=
1

S
∇(h)
i ∇(h)

j S +
1 + a2

S2
hij∇(h)

k (ψ)∇(h)k(ψ)− 2 + 2a2

S2
∇(h)
i (ψ)∇(h)

j (ψ), (5.290)

which is equation 5.46 with ψ →
√
1 + a2ψ. □

Corollary 5.24.1. All the results of the previous section carry over, except one now gets the
Reissner-Nordstrom solution with both electric charge, q, and magnetic charge, p = aq.

Hence, the uniqueness proof is complete in the n = 4 case.

5.2.2 n > 4

The method of [13] that I’ve generalised here works somewhat less satisfyingly with magnetic
fields when n > 4. It’s known from the positive energy theorem based proof in [11] that when
n > 4, Fij = 0, i.e. magnetic fields are not possible in higher dimensional static, vacuum,
Einstein-Maxwell systems. Proving that result with the method in this paper is only possible
after assuming q ̸= 0 and the auxiliary inequality, 5.292, stated below. In some sense, it is
not surprising an auxiliary inequality like inequality 5.292 is required in this method. After
all, even without the Maxwell field, the proof in [13] relies on assuming inequality 5.207 when
n > 4. Thus, it stands to reason that generalising to the Einstein-Maxwell system may require
assuming further inequalities between the constants in the solution; it just happens that such
additional inequalities are not required when purely electric fields are considered. But first, I’ll
need one generalisation of theorem 5.12 to account for magnetic fields.

Lemma 5.25. With the magnetic field, instead of equation 5.91, one has

□(h′)(z) =
1

2
coth(φ/2)∇(h′)

i (φ)∇(h′)i(z) +
1

2
tanh(z/2)∇(h′)

i (z)∇(h′)i(z)

+
2C

n− 2
Ω2 sinh2(φ/2)ψh′ikh′jlFijFkl. (5.291)
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Proof. This is still fairly tedious, so I’ve presented the proof in appendix C. □

Theorem 5.26. If q ̸= 0 and

κA ≤ −1− C2ψ2
0

2ψ0

q(n− 3)ωn−2, (5.292)

then Fij = 0.

Proof. First observe that

∇(h′)
i

(
1

sinh(φ/2) cosh(z/2)
∇(h′)i(z)

)
=

1

sinh(φ/2) cosh(z/2)
□(h)z − cosh(φ/2)

2 sinh2(φ/2) cosh(z/2)
∇(h′)
i (φ)∇(h′)i(z)

− sinh(z/2)

sinh(φ/2) cosh2(z/2)
∇(h′)
i (z)∇(h′)i(z) (5.293)

=
2CΩ2 sinh(φ/2)ψ

(n− 2) cosh(z/2)
h′ikh′jlFijFkl using lemma 5.25 (5.294)

=
2SΩ2 tanh(z/2)

n− 2
h′ikh′jlFijFkl. (5.295)

Then, by Stokes’ theorem,∫
Σt

2SΩ2 tanh(z/2)

n− 2
h′ikh′jlFijFkldV

′ =

∫
Sn−2
∞

ni
1

sinh(φ/2) cosh(z/2)
∇(h′)i(z)dA′

−
∫
H
ni

1

sinh(φ/2) cosh(z/2)
∇(h′)i(z)dA′. (5.296)

The boundary conditions for S and ψ - thus also φ and z - are unchanged by introducing the
magnetic field. Hence, equation 5.118 still holds. Likewise, z takes the constant value, z0, as
before, on H.

∴
∫
Σt

2SΩ2 tanh(z/2)

n− 2
h′ikh′jlFijFkldV

′ = − 1

cosh(z0/2)

∫
H
ni

1

sinh(φ/2)
∇(h′)i(z)dA′. (5.297)

The integral on the RHS is evaluated as follows.
Equation 5.45 is unchanged upon introducing the magnetic field.
Hence, the derivation of equation A.42 in appendix A still holds. It says

0 =
2(1 + cosh(φ/2) cosh(z/2))

sinh(φ/2)
□(h′)(z)− 2 sinh(z/2)□(h′)(φ)− tanh(z/2)

sinh(φ/2)
∇(h′)
i (z)∇(h′)i(z)

−
(

cosh(z/2)

sinh2(φ/2)
+

1

cosh(z/2)
+

cosh(φ/2)

sinh2(φ/2)

)
∇(h′)
i (φ)∇(h′)i(z). (5.298)

Observe that dividing by 2 cosh(z/2) gives

0 =

(
1

sinh(φ/2) cosh(z/2)
+ coth(φ/2)

)
□(h′)(z)− tanh(z/2)□(h′)(φ)

− sinh(z/2)

2 sinh(φ/2) cosh2(z/2)
∇(h′)
i (z)∇(h′)i(z)

− 1

2

(
1

sinh2(φ/2)
+

1

cosh2(z/2)
+

cosh(φ/2)

sinh2(φ/2) cosh(z/2)

)
∇(h′)
i (φ)∇(h′)i(z) (5.299)

= ∇(h′)
i

((
1

sinh(φ/2) cosh(z/2)
+ coth(φ/2)

)
∇(h′)i(z)− tanh(z/2)∇(h′)i(φ)

)
. (5.300)
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Then, by Stokes’ theorem,

0 =

∫
Σt

∇(h′)
i

((
1

sinh(φ/2) cosh(z/2)
+ coth(φ/2)

)
∇(h′)i(z)− tanh(z/2)∇(h′)i(φ)

)
dV ′

(5.301)

=

∫
Sn−2
∞

ni

((
1

sinh(φ/2) cosh(z/2)
+ coth(φ/2)

)
∇(h′)i(z)− tanh(z/2)∇(h′)i(φ)

)
dA′

−
∫
H
ni

((
1

sinh(φ/2) cosh(z/2)
+ coth(φ/2)

)
∇(h′)i(z)− tanh(z/2)∇(h′)i(φ)

)
dA′.

(5.302)

As before, the boundary conditions mean z takes the constant values, z0 on H and z1 at S
n−2
∞ .

Likewise, φ = 0 on H and φ = ∞ at Sn−2
∞ .

Again, ∇(h′)
i (φ)∇(h′)i(φ) = κ′2.

∴
∫
H
ni

((
1

sinh(φ/2) cosh(z/2)
+ coth(φ/2)

)
∇(h′)i(z)− tanh(z/2)∇(h′)i(φ)

)
dA′

=
1 + cosh(z0/2)

cosh(z0/2)

∫
H
ni

1

sinh(φ/2)
∇(h′)i(z)dA′

− tanh(z0/2)

∫
H

1√
∇(h′)
j (φ)∇(h′)j(φ)

∇(h′)
i (φ)∇(h′)i(φ)dA′ (5.303)

=
1 + cosh(z0/2)

cosh(z0/2)

∫
H
ni

1

sinh(φ/2)
∇(h′)i(z)dA′ − tanh(z0/2)κ

′A′. (5.304)

Meanwhile, for the integral at infinity, the asymptotics are the same as without the magnetic
field, so equations 5.115, 5.100, 5.120, 5.99, 5.118 and 5.185 still hold. Hence,∫

Sn−2
∞

ni

((
1

sinh(φ/2) cosh(z/2)
+ coth(φ/2)

)
∇(h′)i(z)− tanh(z/2)∇(h′)i(φ)

)
dA′

= 0 +

∫
Sn−2
∞

ni∇(h′)i(z)dA′ − tanh(z1/2)

∫
Sn−2
∞

ni∇(h′)i(φ)dA′ (5.305)

=

∫
Sn−2
∞

r2

m2/(n−3)
δij
m1/(n−3)

r2
xifxjdA

′ − tanh(z1/2)2m(n− 3)ωn−2 (5.306)

= −2m(n− 3)ωn−2 tanh(z1/2). (5.307)

Putting both integrals together, I get

0 = −2m(n− 3)ωn−2 tanh(z1/2)−
1 + cosh(z0/2)

cosh(z0/2)

∫
H
ni

1

sinh(φ/2)
∇(h′)i(z)dA′

+ tanh(z0/2)κ
′A′ (5.308)

⇐⇒
∫
H
ni

1

sinh(φ/2)
∇(h′)i(z)dA′

=
sinh(z0/2)

1 + cosh(z0/2)
κ′A′ − 2m(n− 3)ωn−2 tanh(z1/2)

cosh(z0/2)

1 + cosh(z0/2)
. (5.309)

From equation 5.122,

cosh(z0/2) =
1

2

(
1 + Cψ0

1− Cψ0

+
1− Cψ0

1 + Cψ0

)
=

1 + C2ψ2
0

1− C2ψ2
0

and (5.310)

sinh(z0/2) =
1

2

(
1 + Cψ0

1− Cψ0

− 1− Cψ0

1 + Cψ0

)
=

2Cψ0

1− C2ψ2
0

. (5.311)
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∴
sinh(z0/2)

1 + cosh(z0/2)
=

2Cψ0

1− C2ψ2
0 + 1 + C2ψ2

0

= Cψ0 and (5.312)

cosh(z0/2)

1 + cosh(z0/2)
=

1 + C2ψ2
0

1− C2ψ2
0 + 1 + C2ψ2

0

=
1

2
(1 + C2ψ2

0). (5.313)

Likewise, from equation 5.110,

tanh(z1/2) =
ez1 − 1

ez1 + 1
=

m−2Cq
m+2Cq

− 1
m−2Cq
m+2Cq

+ 1
= −2Cq

m
. (5.314)

Substituting back into equation 5.309 gives∫
H
ni

1

sinh(φ/2)
∇(h′)i(z)dA′ = Cψ0κ

′A′ − 2m(n− 3)ωn−2

(
−2Cq

m

)
1

2
(1 + C2ψ2

0) (5.315)

= C(ψ0κ
′A′ + 2q(n− 3)ωn−2(1 + C2ψ2

0)) (5.316)

= C

(
ψ0

4κ

(1− C2ψ2
0)(1 + C2ψ0)1/(n−3)

Ωn−2
|H A

+ 2q(n− 3)ωn−2(1 + C2ψ2
0)

)
using equation 5.155 (5.317)

= C

(
ψ0

4κ

(1− C2ψ2
0)(1 + C2ψ0)1/(n−3)

(1 + C2ψ2
0)

(n−2)/(n−3)A

+ 2q(n− 3)ωn−2(1 + C2ψ2
0)

)
(5.318)

= 2C(1 + C2ψ2
0)

(
2κA

ψ0

1− C2ψ2
0

+ q(n− 3)ωn−2

)
. (5.319)

Substituting this result back into equation 5.297 says∫
Σt

2SΩ2 tanh(z/2)

n− 2
h′ikh′jlFijFkldV

′ = −2C(1 + C2ψ2
0)

cosh(z0/2)

(
2κAψ0

1− C2ψ2
0

+ q(n− 3)ωn−2

)
(5.320)

= −2C(2κAψ0 + q(n− 3)ωn−2(1− C2ψ2
0)) (5.321)

= −4Cψ0

(
κA+

1− C2ψ2
0

2ψ0

q(n− 3)ωn−2

)
. (5.322)

First suppose that q > 0. Then, z > 0 and ψ0 < 0. Then, inequality 5.292 implies∫
Σt

2SΩ2 tanh(z/2)

n− 2
h′ikh′jlFijFkldV

′ ≤ 0. (5.323)

Since the integrand on the LHS is non-negative, it must be that h′ikh′jlFijFkl = 0. Since h′ is
Riemannian, this is equivalent to Fij = 0.
Likewise, when q < 0, I have z < 0, ψ > 0 and finally∫

Σt

2SΩ2 tanh(z/2)

n− 2
h′ikh′jlFijFkldV

′ ≥ 0. (5.324)

Since the integrand is non-positive now, the result is again Fij = 0. □

Corollary 5.26.1. When the conditions of the theorem hold, the problem reduces to the one
studied in the earlier sections of the paper and thus all the results there apply again.
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Appendix A

Proof of theorem 5.12

In this appendix I’ll prove that equations 5.44 and 5.45 are equivalent to

□(h′)φ =
1

2
tanh(z/2)∇(h′)

i (φ)∇(h′)i(z) +
1

2
coth(φ/2)∇(h′)

i (z)∇(h′)i(z) and (A.1)

□(h′)z =
1

2
coth(φ/2)∇(h′)

i (φ)∇(h′)i(z) +
1

2
tanh(z/2)∇(h′)

i (z)∇(h′)i(z). (A.2)

Start with equation 5.45, ∇(h)
i

(
1
S
∇(h)iψ

)
= ∇(h)

i

(
1
S
∇(h)i(Cψ)

)
= 0.

I’ll first need the transformation of the Christoffel symbols.

Γ
(h)i

jk =
1

2
hil(∂jhkl + ∂khlj − ∂lhjk) (A.3)

=
1

2
Ω2h′il

(
∂j

(
1

Ω2
h′kl

)
+ ∂k

(
1

Ω2
h′lj

)
− ∂l

(
1

Ω2
h′jk

))
(A.4)

= Γ
(h′)i

jk −
1

Ω
h′il(h′kl∂jΩ + h′lj∂kΩ− h′jk∂lΩ) (A.5)

= Γ
(h′)i

jk − δik∇
(h′)
j (ln(Ω))− δij∇

(h′)
k (ln(Ω)) + h′jk∇(h′)i(ln(Ω)). (A.6)

Using this, equation 5.45 transforms as

0 = ∇(h)
i

(
1

S
∇(h)i(Cψ)

)
(A.7)

= ∂i

(
1

S
hij∇(h)

j (Cψ)

)
+ Γ

(h)i
ji

1

S
hjk∇(h)

k (Cψ) (A.8)

= ∂i

(
1

S
Ω2h′ij∇(h′)

j (Cψ)

)
+ (Γ

(h′)i
ji − δii∇

(h′)
j (ln(Ω))− δij∇

(h′)
i (ln(Ω)) + h′ji∇(h′)i(ln(Ω)))

1

S
Ω2h′jk∇(h′)

k (Cψ)

(A.9)

= ∇(h′)
i

(
1

S
Ω2∇(h′)i(Cψ)

)
− n− 1

S
Ω2∇(h′)

i (ln(Ω))∇(h′)i(Cψ) (A.10)

= Ω2∇(h′)
i

(
1

S
∇(h′)i(Cψ)

)
− n− 3

S
Ω2∇(h′)

i (ln(Ω))∇(h′)i(Cψ). (A.11)

∴ 0 = ∇(h′)
i

(
1

S
∇(h′)i(Cψ)

)
− n− 3

S
∇(h′)
i (ln(Ω))∇(h′)i(Cψ). (A.12)
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Now I have to actually start computing derivatives. By lemma 5.9,

∇(h′)
i (Cψ) = ∇(h′)

i

(
sinh(z/2)

cosh(φ/2) + cosh(z/2)

)
(A.13)

=
1

(cosh(φ/2) + cosh(z/2))2

(
1

2
cosh(z/2)∇(h′)

i (z)(cosh(φ/2) + cosh(z/2))

− 1

2
sinh(z/2)(sinh(z/2)∇(h′)

i z + sinh(φ/2)∇(h′)
i φ

)
(A.14)

=
(1 + cosh(φ/2) cosh(z/2))∇(h′)

i z − sinh(z/2) sinh(φ/2)∇(h′)
i φ

2(cosh(φ/2) + cosh(z/2))2
. (A.15)

Lemma 5.9 says the expression for S is the same as the one for Cψ, but with φ and z swapped,
so I can immediately read off that

∇(h′)
i S =

(1 + cosh(φ/2) cosh(z/2))∇(h′)
i φ− sinh(z/2) sinh(φ/2)∇(h′)

i z

2(cosh(φ/2) + cosh(z/2))2
. (A.16)

Next, using equation 5.84,

∇(h′)
i (ln(Ω))

=
1

Ω
∇(h′)
i Ω (A.17)

=
1

n− 3

(
2 cosh(z/2)

cosh(φ/2) + cosh(z/2)

)−1

∇(h′)
i

(
2 cosh(z/2)

cosh(φ/2) + cosh(z/2)

)
(A.18)

=
1

2(n− 3) cosh(z/2)(cosh(φ/2) + cosh(z/2))
(sinh(z/2)∇(h′)

i (z)(cosh(φ/2) + cosh(z/2))

− cosh(z/2)(sinh(z/2)∇(h′)
i z + sinh(φ/2)∇(h′)

i φ)) (A.19)

=
tanh(z/2) cosh(φ/2)∇(h′)

i z − sinh(φ/2)∇(h′)
i φ

2(n− 3)(cosh(φ/2) + cosh(z/2))
. (A.20)

The quantities that appear in A.12 are 1
S
∇(h′)
i (Cψ) and n−3

S
∇(h′)
i (ln(Ω)). They are

1

S
∇(h′)
i (Cψ) =

cosh(φ/2) + cosh(z/2)

sinh(φ/2)

× (1 + cosh(φ/2) cosh(z/2))∇(h′)
i z − sinh(z/2) sinh(φ/2)∇(h′)

i φ

2(cosh(φ/2) + cosh(z/2))2
(A.21)

=

(
1

sinh(φ/2)
+ cosh(φ/2) coth(φ/2)

)
∇(h′)
i z − sinh(z/2)∇(h′)

i φ

2(cosh(φ/2) + cosh(z/2))
and (A.22)

n− 3

S
∇(h′)
i (ln(Ω)) =

(n− 3) cosh(φ/2) + cosh(z/2)

sinh(φ/2)

× tanh(z/2) cosh(φ/2)∇(h′)
i z − sinh(φ/2)∇(h′)

i φ

2(n− 3)(cosh(φ/2) + cosh(z/2))
(A.23)

=
1

2
tanh(z/2) coth(φ/2)∇(h′)

i z − 1

2
∇(h′)
i φ. (A.24)
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The first term in equation A.12 is then

∇(h′)
i

(
1

S
∇(h′)i(Cψ)

)

= ∇(h′)
i


(

1
sinh(φ/2)

+ cosh(z/2) coth(φ/2)
)
∇(h′)iz − sinh(z/2)∇(h′)iφ

2(cosh(φ/2) + cosh(z/2))

 (A.25)

=
1

2(cosh(φ/2) + cosh(z/2))2

[
(cosh(φ/2) + cosh(z/2))

(
− cosh(φ/2)

2 sinh2(φ/2)
∇(h′)
i (φ)∇(h′)i(z)

+
1

sinh(φ/2)
□(h′)z +

1

2
sinh(z/2) coth(φ/2)∇(h′)

i (z)∇(h′)i(z)− cosh(z/2)

2 sinh2(φ/2)
∇(h′)
i (φ)∇(h′)i(z)

+ cosh(z/2) coth(φ/2)□(h′)z − 1

2
cosh(z/2)∇(h′)

i (φ)∇(h′)i(z)− sinh(z/2)□(h′)φ

)
−
(

1

sinh(φ/2)
∇(h′)iz + cosh(z/2) coth(φ/2)∇(h′)iz − sinh(z/2)∇(h′)iφ

)
×
(
1

2
sinh(z/2)∇(h′)

i z +
1

2
sinh(φ/2)∇(h′)

i φ

)]
. (A.26)

This expands to the gargantuan mess1 of

∇(h′)
i

(
1

S
∇(h′)i(Cψ)

)
=

1

4(cosh(φ/2) + cosh(z/2))2

[
− coth2(φ/2)∇(h′)

i (φ)∇(h′)i(z)

− cosh(z/2) cosh(φ/2)

sinh2(φ/2)
∇(h′)
i (φ)∇(h′)i(z) + 2 coth(φ/2)□(h′)z +

2 cosh(z/2)

sinh(φ/2)
□(h′)z

+
sinh(z/2) cosh2(φ/2)

sinh(φ/2)
∇(h′)
i (z)∇(h′)i(z) + cosh(z/2) sinh(z/2) coth(φ/2)∇(h′)

i (z)∇(h′)i(z)

− cosh(z/2) cosh(φ/2)

sinh2(φ/2)
∇(h′)
i (φ)∇(h′)i(z)− cosh2(z/2)

sinh2(φ/2)
∇(h′)
i (φ)∇(h′)i(z)

+
2 cosh(z/2) cosh2(φ/2)

sinh(φ/2)
□(h′)z + 2 cosh2(z/2) coth(φ/2)□(h′)z

− cosh(z/2) cosh(φ/2)∇(h′)
i (φ)∇(h′)i(z)− cosh2(z/2)∇(h′)

i (φ)∇(h′)i(z)

− 2 sinh(z/2) cosh(φ/2)□(h′)φ− 2 sinh(z/2) cosh(z/2)□(h′)φ− sinh(z/2)

sinh(φ/2)
∇(h′)
i (z)∇(h′)i(z)

−∇(h′)
i (φ)∇(h′)i(z)− sinh(z/2) cosh(z/2) coth(φ/2)∇(h′)

i (z)∇(h′)i(z)

− cosh(z/2) cosh(φ/2)∇(h′)
i (φ)∇(h′)i(z) + sinh2(z/2)∇(h′)

i (φ)∇(h′)i(z)

+ sinh(z/2) sinh(φ/2)∇(h′)
i (φ)∇(h′)i(φ)

]
. (A.27)

1Although, as messes go, this expression pales in comparison to some of the equations involved in calculating

R
(h′)
ij in terms of φ, z and h′. Luckily, I didn’t end up actually needing that full expression in this work.
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The other term in equation A.12 is

n− 3

S
∇(h′)
i (ln(Ω))∇(h′)i(Cψ) (A.28)

=
1

2

(
tanh(z/2) coth(φ/2)∇(h′)

i z −∇(h′)
i φ

)
× (1 + cosh(φ/2) cosh(z/2))∇(h′)iz − sinh(z/2) sinh(φ/2)∇(h′)iφ

2(cosh(φ/2) + cosh(z/2))2
(A.29)

=
1

4(cosh(φ/2) + cosh(z/2))2

[
sinh(φ/2) sinh(z/2)∇(h′)

i (φ)∇(h′)i(φ)

+∇(h′)
i (z)∇(h′)i(z)

(
tanh(z/2) coth(φ/2) +

sinh(z/2) cosh2(φ/2)

sinh(φ/2)

)
−∇(h′)

i (φ)∇(h′)i(z)

(
1 + cosh(z/2) cosh(φ/2) +

cosh(φ/2) sinh2(z/2)

cosh(z/2)

)]
. (A.30)

Mercifully, putting these expressions together in equation A.12 leads to some simplification. In
particular,

0 = 2□(h′)(z)

(
coth(φ/2) +

cosh(z/2)

sinh(φ/2)
+

cosh(z/2) cosh2(φ/2)

sinh(φ/2)
+ cosh2(z/2) coth(φ/2)

)
− 2□(h′)(φ)(sinh(z/2) cosh(φ/2) + sinh(z/2) cosh(z/2))

+∇(h′)
i (z)∇(h′)i(z)

(
sinh(z/2) cosh2(φ/2)

sinh(φ/2)
+ cosh(z/2) sinh(z/2) coth(φ/2)− sinh(z/2)

sinh(φ/2)

− sinh(z/2) cosh(z/2) coth(φ/2)− tanh(z/2) coth(φ/2)− sinh(z/2) cosh2(φ/2)

sinh(φ/2)

)
+∇(h′)

i (φ)∇(h′)i(φ)(sinh(z/2) sinh(φ/2)− sinh(z/2) sinh(φ/2))

+∇(h′)
i (φ)∇(h′)i(z)

(
− coth2(φ/2)− cosh(φ/2) cosh(z/2)

sinh2(φ/2)
− cosh(φ/2) cosh(z/2)

sinh2(φ/2)

− cosh2(z/2)

sinh2(φ/2)
− cosh(z/2) cosh(φ/2)− cosh2(z/2)− 1− cosh(z/2) cosh(φ/2) + sinh2(z/2)

+ 1 + cosh(z/2) cosh(φ/2) +
cosh(φ/2) sinh2(z/2)

cosh(z/2)

)
(A.31)

= 2□(h′)(z)

(
coth(φ/2) +

cosh(z/2)

sinh(φ/2)
+

cosh(z/2) cosh2(φ/2)

sinh(φ/2)
+ cosh2(z/2) coth(φ/2)

)
− 2□(h′)(φ) sinh(z/2)(cosh(φ/2) + cosh(z/2))

+∇(h′)
i (z)∇(h′)i(z)

(
− sinh(z/2)

sinh(φ/2)
− tanh(z/2) coth(φ/2)

)
+∇(h′)

i (φ)∇(h′)i(z)

(
− coth2(φ/2)− 2 cosh(φ/2) cosh(z/2)

sinh2(φ/2)
− cosh2(z/2)

sinh2(φ/2)

− cosh(z/2) cosh(φ/2)− cosh2(z/2) + sinh2(z/2) +
cosh(φ/2) sinh2(z/2)

cosh(z/2)

)
. (A.32)
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The coefficient of each derivative combination simplifies as follows.

coth(φ/2) +
cosh(z/2)

sinh(φ/2)
+

cosh(z/2) cosh2(φ/2)

sinh(φ/2)
+ cosh2(z/2) coth(φ/2) (A.33)

=
1

sinh(φ/2)

(
cosh(φ/2) + cosh(z/2) + cosh(z/2) cosh2(φ/2) + cosh2(z/2) cosh(φ/2)

)
(A.34)

=
1 + cosh(φ/2) cosh(z/2)

sinh(φ/2)
(cosh(φ/2) + cosh(z/2)) and (A.35)

− sinh(z/2)

sinh(φ/2)
− tanh(z/2) coth(φ/2) = −tanh(z/2)

sinh(φ/2)
(cosh(z/2) + cosh(φ/2)). (A.36)

The last one is more obscure. Observe that

− cosh(φ/2) + cosh(z/2)

sinh2(φ/2) cosh(z/2)
(cosh2(z/2) + sinh2(φ/2) + cosh(φ/2) cosh(z/2)) (A.37)

= −
(

cosh(φ/2)

cosh(z/2) sinh2(φ/2)
+

1

sinh2(φ/2)

)
× (cosh2(z/2) + sinh2(φ/2) + cosh(φ/2) cosh(z/2)) (A.38)

= −cosh(φ/2) cosh(z/2)

sinh2(φ/2)
− cosh2(z/2)

sinh2(φ/2)
− cosh(φ/2)

cosh(z/2)
− 1− coth2(φ/2)

− cosh(φ/2) cosh(z/2)

sinh2(φ/2)
(A.39)

= −2 cosh(φ/2) cosh(z/2)

sinh2(φ/2)
− cosh2(z/2)

sinh2(φ/2)
− cosh(φ/2)

cosh(z/2)
− 1− coth2(φ/2) (A.40)

= −2 cosh(φ/2) cosh(z/2)

sinh2(φ/2)
− cosh2(z/2)

sinh2(φ/2)
− cosh(φ/2) cosh(z/2) +

cosh(φ/2) sinh2(z/2)

cosh(z/2)

− cosh2(z/2) + sinh2(z/2)− coth2(φ/2). (A.41)

Hence, equation A.32 simplifies to

0 =
2(1 + cosh(φ/2) cosh(z/2))

sinh(φ/2)
□(h′)(z)− 2 sinh(z/2)□(h′)(φ)− tanh(z/2)

sinh(φ/2)
∇(h′)
i (z)∇(h′)i(z)

−
(

cosh(z/2)

sinh2(φ/2)
+

1

cosh(z/2)
+

cosh(φ/2)

sinh2(φ/2)

)
∇(h′)
i (φ)∇(h′)i(z). (A.42)

This is as far as I can go with equation 5.45 for now. To complete the proof of theorem 5.12,
I’ll need to consider equation 5.44 as well.
First observe that for any function, f , using equation A.6,

∇(h)
i ∇(h)

j f

= ∂i∂jf − Γ
(h)k

ji∇
(h)
k f (A.43)

= ∂i∂jf − (Γ
(h′)k

ji − δki∇
(h′)
j (ln(Ω))− δkj∇

(h′)
i (ln(Ω)) + h′ji∇(h′)k(ln(Ω)))∇(h′)

k f (A.44)

= ∇(h′)
i ∇(h′)

j f +∇(h′)
i (f)∇(h′)

j (ln(Ω)) +∇(h′)
j (f)∇(h′)

i (ln(Ω))

− h′ij∇
(h′)
k (f)∇(h′)k(ln(Ω)). (A.45)

∴ □(h)f = Ω2h′ij∇(h)
i ∇(h)

j f = Ω2(□(h′)f − (n− 3)∇(h′)
i (f)∇(h′)i(ln(Ω))). (A.46)
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Hence, equation 5.44, transforms as

□(h)S =
1

S
∇(h)
i (Cψ)∇(h)i(Cψ) (A.47)

⇐⇒ Ω2(□(h′)S − (n− 3)∇(h′)
i (S)∇(h′)i(ln(Ω))) =

1

S
Ω2∇(h′)

i (Cψ)∇(h′)i(Cψ) (A.48)

⇐⇒ □(h′)S = (n− 3)∇(h′)
i (S)∇(h′)i(ln(Ω)) +

1

S
∇(h′)
i (Cψ)∇(h′)i(Cψ). (A.49)

I’ll evaluate each of these terms in terms of φ and z next. Using equation A.16 and A.20,

(n− 3)∇(h′)
i (S)∇(h′)i(ln(Ω))

= (n− 3)
(1 + cosh(φ/2) cosh(z/2))∇(h′)

i φ− sinh(z/2) sinh(φ/2)∇(h′)
i z

2(cosh(φ/2) + cosh(z/2))2

× tanh(z/2) cosh(φ/2)∇(h′)iz − sinh(φ/2)∇(h′)iφ

2(n− 3)(cosh(φ/2) + cosh(z/2))
(A.50)

=
1

4(cosh(φ/2) + cosh(z/2))3

[
− sinh2(z/2) sinh(φ/2) cosh(φ/2)

cosh(z/2)
∇(h′)
i (z)∇(h′)i(z)

−∇(h′)
i (φ)∇(h′)i(φ)(sinh(φ/2) + cosh(z/2) cosh(φ/2) sinh(φ/2))

+∇(h′)
i (φ)∇(h′)i(z)(tanh(z/2) cosh(φ/2) + sinh(z/2) cosh2(φ/2)

+ sinh(z/2) sinh2(φ/2))

]
. (A.51)

Using equation A.15,

1

S
∇(h′)
i (Cψ)∇(h′)i(Cψ)

=
(1 + cosh(φ/2) cosh(z/2))∇(h′)

i z − sinh(z/2) sinh(φ/2)∇(h′)
i φ

4 sinh(φ/2)(cosh(φ/2) + cosh(z/2))3

× ((1 + cosh(φ/2) cosh(z/2))∇(h′)iz − sinh(z/2) sinh(φ/2)∇(h′)iφ) (A.52)

=
1

4(cosh(φ/2) + cosh(z/2))3

[
sinh2(z/2) sinh(φ/2)∇(h′)

i (φ)∇(h′)i(φ)

+∇(h′)
i (z)∇(h′)i(z)

(
1

sinh(φ/2)
+ 2 cosh(z/2) coth(φ/2) +

cosh2(z/2) cosh2(φ/2)

sinh(φ/2)

)
− 2∇(h′)

i (φ)∇(h′)i(z)(sinh(z/2) + sinh(z/2) cosh(z/2) cosh(φ/2))

]
. (A.53)
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Lastly, using equation A.16,

□(h′)S = ∇(h′)i

(
(1 + cosh(φ/2) cosh(z/2))∇(h′)

i φ− sinh(z/2) sinh(φ/2)∇(h′)
i z

2(cosh(φ/2) + cosh(z/2))2

)
(A.54)

= −sinh(φ/2)∇(h′)i(φ) + sinh(z/2)∇(h′)i(z)

2(cosh(φ/2) + cosh(z/2))3

× (∇(h′)
i (φ) + cosh(φ/2) cosh(z/2)∇(h′)

i (φ)− sinh(z/2) sinh(φ/2)∇(h′)
i (z))

+
1

4(cosh(φ/2) + cosh(z/2))2

[
2□(h′)φ+ sinh(φ/2) cosh(z/2)∇(h′)

i (φ)∇(h′)i(φ)

+ cosh(φ/2) sinh(z/2)∇(h′)
i (φ)∇(h′)i(z) + 2 cosh(φ/2) cosh(z/2)□(h′)φ

− cosh(φ/2) sinh(z/2)∇(h′)
i (φ)∇(h′)i(z)− sinh(φ/2) cosh(z/2)∇(h′)

i (z)∇(h′)i(z)

− 2 sinh(φ/2) sinh(z/2)□(h′)z

]
(A.55)

∴ □(h′)S

= − 1

2(cosh(φ/2) + cosh(z/2))3

(
sinh2(z/2) sinh(φ/2)∇(h′)

i (z)∇(h′)i(z)

+∇(h′)
i (φ)∇(h′)i(z)(sinh(z/2) + sinh(z/2) cosh(z/2) cosh(φ/2)− sinh2(φ/2) sinh(z/2))

+∇(h′)
i (φ)∇(h′)i(φ)(sinh(φ/2) + sinh(φ/2) cosh(φ/2) cosh(z/2))

)
+

1

4(cosh(φ/2) + cosh(z/2))2

[
2□(h′)(φ)(1 + cosh(φ/2) cosh(z/2))

− 2 sinh(φ/2) sinh(z/2)□(h′)(z)− sinh(φ/2) cosh(z/2)∇(h′)
i (z)∇(h′)i(z)

+ sinh(φ/2) cosh(z/2)∇(h′)
i (φ)∇(h′)i(φ)

]
. (A.56)

Putting these three expressions together, equation A.49 says

0 = 2□(h′)(φ)(1 + cosh(φ/2) cosh(z/2))− 2 sinh(φ/2) sinh(z/2)□(h′)(z)

− sinh(φ/2) cosh(z/2)∇(h′)
i (z)∇(h′)i(z) + sinh(φ/2) cosh(z/2)∇(h′)

i (φ)∇(h′)i(φ)

+
1

cosh(φ/2) + cosh(z/2)

[
−∇(h′)

i (φ)∇(h′)i(z)
(
2 sinh(z/2)

+ 2 sinh(z/2) cosh(z/2) cosh(φ/2)− 2 sinh2(φ/2) sinh(z/2) + tanh(z/2) cosh(φ/2)

+ sinh(z/2) cosh2(φ/2) + sinh(z/2) sinh2(φ/2)− 2 sinh(z/2)− 2 sinh(z/2) cosh(z/2) cosh(φ/2)
)

−∇(h′)
i (φ)∇(h′)i(φ)

(
2 sinh(φ/2) + 2 sinh(φ/2) cosh(φ/2) cosh(z/2)− sinh(φ/2)

− cosh(z/2) sinh(φ/2) cosh(φ/2) + sinh2(z/2) sinh(φ/2)
)

+∇(h′)
i (z)∇(h′)i(z)

(
2 sinh2(z/2) sinh(φ/2) +

sinh2(z/2) sinh(φ/2) cosh(φ/2)

cosh(z/2)
− 1

sinh(φ/2)

− 2 cosh(z/2) coth(φ/2)− cosh2(z/2) cosh2(φ/2)

sinh(φ/2)

)]
. (A.57)
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∴ 0 = 2□(h′)(φ)(1 + cosh(φ/2) cosh(z/2))− 2 sinh(φ/2) sinh(z/2)□(h′)(z)

− sinh(φ/2) cosh(z/2)∇(h′)
i (z)∇(h′)i(z) + sinh(φ/2) cosh(z/2)∇(h′)

i (φ)∇(h′)i(φ)

+
1

cosh(φ/2) + cosh(z/2)

[
−∇(h′)

i (φ)∇(h′)i(z)
(
− sinh2(φ/2) sinh(z/2)

+ tanh(z/2) cosh(φ/2) + sinh(z/2) cosh2(φ/2)
)

−∇(h′)
i (φ)∇(h′)i(φ)

(
sinh(φ/2) + sinh(φ/2) cosh(φ/2) cosh(z/2) + sinh2(z/2) sinh(φ/2)

)
+∇(h′)

i (z)∇(h′)i(z)

(
2 sinh2(z/2) sinh(φ/2) +

sinh2(z/2) sinh(φ/2) cosh(φ/2)

cosh(z/2)
− 1

sinh(φ/2)

− 2 cosh(z/2) coth(φ/2)− cosh2(z/2) cosh2(φ/2)

sinh(φ/2)

)]
(A.58)

Again, the coefficient of each derivative combination simplifies.

− sinh2(φ/2) sinh(z/2) + tanh(z/2) cosh(φ/2) + sinh(z/2) cosh2(φ/2) (A.59)

= sinh(z/2) + tanh(z/2) cosh(φ/2) (A.60)

= tanh(z/2)(cosh(φ/2) + cosh(z/2)) and (A.61)

sinh(φ/2) + sinh(φ/2) cosh(φ/2) cosh(z/2) + sinh2(z/2) sinh(φ/2) (A.62)

= cosh2(z/2) sinh(φ/2) + sinh(φ/2) cosh(φ/2) cosh(z/2) (A.63)

= sinh(φ/2) cosh(z/2)(cosh(φ/2) + cosh(z/2)). (A.64)

The third one is again more obscure. Observe that

(cosh(φ/2) + cosh(z/2))

(
sinh(φ/2) sinh2(z/2)

cosh(z/2)
− cosh(z/2)

sinh(φ/2)
− coth(φ/2)

)
=

cosh(φ/2) sinh(φ/2) sinh2(z/2)

cosh(z/2)
+ sinh(φ/2) sinh2(z/2)− cosh(z/2) coth(φ/2)− cosh2(z/2)

sinh(φ/2)

− cosh2(φ/2)

sinh(φ/2)
− cosh(z/2) coth(φ/2) (A.65)

=
cosh(φ/2) sinh(φ/2) sinh2(z/2)

cosh(z/2)
+ sinh(φ/2) sinh2(z/2)− 2 cosh(z/2) coth(φ/2)

− 1 + sinh2(z/2)

sinh(φ/2)
− cosh2(φ/2)

sinh(φ/2)
(cosh2(z/2)− sinh2(z/2)) (A.66)

=
cosh(φ/2) sinh(φ/2) sinh2(z/2)

cosh(z/2)
− 2 cosh(z/2) coth(φ/2)− 1

sinh(φ/2)

− cosh2(φ/2) cosh2(z/2)

sinh(φ/2)
+ sinh(φ/2) sinh2(z/2)− sinh2(z/2)

sinh(φ/2)
(1− cosh2(φ/2)) (A.67)

=
cosh(φ/2) sinh(φ/2) sinh2(z/2)

cosh(z/2)
− 2 cosh(z/2) coth(φ/2)− 1

sinh(φ/2)

− cosh2(φ/2) cosh2(z/2)

sinh(φ/2)
+ 2 sinh(φ/2) sinh2(z/2) (A.68)
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which is the coefficient of ∇(h′)
i (z)∇(h′)i(z) in equation A.58. Hence, equation A.58 simplifies

to

0 = 2□(h′)(φ)(1 + cosh(φ/2) cosh(z/2))− 2 sinh(φ/2) sinh(z/2)□(h′)(z)

− sinh(φ/2) cosh(z/2)∇(h′)
i (z)∇(h′)i(z) + sinh(φ/2) cosh(z/2)∇(h′)

i (φ)∇(h′)i(φ)

− tanh(z/2)∇(h′)
i (φ)∇(h′)i(z)− sinh(φ/2) cosh(z/2)∇(h′)

i (φ)∇(h′)i(φ)

+

(
sinh(φ/2) sinh2(z/2)

cosh(z/2)
− cosh(z/2)

sinh(φ/2)
− coth(φ/2)

)
∇(h′)
i (z)∇(h′)i(z) (A.69)

= 2□(h′)(φ)(1 + cosh(φ/2) cosh(z/2))− 2 sinh(φ/2) sinh(z/2)□(h′)(z)

− tanh(z/2)∇(h′)
i (φ)∇(h′)i(z)

+∇(h′)
i (z)∇(h′)i(z)

(
sinh(φ/2) sinh2(z/2)

cosh(z/2)
− cosh(z/2)

sinh(φ/2)
− coth(φ/2)

− sinh(φ/2) cosh(z/2)

)
. (A.70)

Hence, I finally get that equation 5.44 is equivalent to

0 = 2□(h′)(φ)(1 + cosh(φ/2) cosh(z/2))− 2 sinh(φ/2) sinh(z/2)□(h′)(z)

− tanh(z/2)∇(h′)
i (φ)∇(h′)i(z)

+∇(h′)
i (z)∇(h′)i(z)

(
sinh(φ/2) sinh2(z/2)

cosh(z/2)
− cosh(z/2) cosh2(φ/2)

sinh(φ/2)
− coth(φ/2)

)
. (A.71)

Re-arranging for □(h′)z, I get

□(h′)z =

(
1

sinh(φ/2) sinh(z/2)
+ coth(φ/2) coth(z/2)

)
□(h′)φ

+
1

2
∇(h′)
i (z)∇(h′)i(z)

(
tanh(z/2)− coth(z/2) coth2(φ/2)− cosh(φ/2)

sinh(z/2) sinh2(φ/2)

)
− 1

2 sinh(φ/2) cosh(z/2)
∇(h′)
i (φ)∇(h′)i(z). (A.72)

Substituting this back into equation A.42 gives

0 =
2(1 + cosh(φ/2) cosh(z/2))

sinh(φ/2)

(
1

sinh(φ/2) sinh(z/2)
+ coth(φ/2) coth(z/2)

)
□(h′)φ

+
1

2
∇(h′)
i (z)∇(h′)i(z)

(
tanh(z/2)− coth(z/2) coth2(φ/2)− cosh(φ/2)

sinh(z/2) sinh2(φ/2)

)
× 2(1 + cosh(φ/2) cosh(z/2))

sinh(φ/2)

− 1

2 sinh(φ/2) cosh(z/2)
∇(h′)
i (φ)∇(h′)i(z)

2(1 + cosh(φ/2) cosh(z/2))

sinh(φ/2)

− 2 sinh(z/2)□(h′)(φ)− tanh(z/2)

sinh(φ/2)
∇(h′)
i (z)∇(h′)i(z)

−
(

cosh(z/2)

sinh2(φ/2)
+

1

cosh(z/2)
+

cosh(φ/2)

sinh2(φ/2)

)
∇(h′)
i (φ)∇(h′)i(z). (A.73)
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∴ 0 = 2□(h′)(φ)

(
1

sinh2(φ/2) sinh(z/2)
+

2 coth(z/2) cosh(φ/2)

sinh2(φ/2)
+

coth2(φ/2) cosh2(z/2)

sinh(z/2)

− sinh(z/2)
)

−∇(h′)
i (φ)∇(h′)i(z)

(
1

sinh2(φ/2) cosh(z/2)
+

2 cosh(φ/2)

sinh2(φ/2)
+

cosh(z/2)

sinh2(φ/2)
+

1

cosh(z/2)

)
+∇(h′)

i (z)∇(h′)i(z)

(
coth(φ/2) sinh(z/2)− 2 coth(z/2) cosh2(φ/2)

sinh3(φ/2)

− cosh2(z/2) coth3(φ/2)

sinh(z/2)
− cosh(φ/2)

sinh(z/2) sinh3(φ/2)

)
. (A.74)

As has become custom by now, each of these daunting coefficients simplifies significantly.

1

sinh2(φ/2) sinh(z/2)
+

2 coth(z/2) cosh(φ/2)

sinh2(φ/2)
+

coth2(φ/2) cosh2(z/2)

sinh(z/2)
− sinh(z/2)

=
1 + 2 cosh(z/2) cosh(φ/2) + cosh2(φ/2) cosh2(z/2)− sinh2(φ/2) sinh2(z/2)

sinh2(φ/2) sinh(z/2)
(A.75)

=
1 + 2 cosh(z/2) cosh(φ/2) + cosh2(φ/2) cosh2(z/2)− (cosh2(φ/2)− 1)(cosh2(z/2)− 1)

sinh2(φ/2) sinh(z/2)
(A.76)

=
(cosh(φ/2) + cosh(z/2))2

sinh2(φ/2) sinh(z/2)
, (A.77)

1

sinh2(φ/2) cosh(z/2)
+

2 cosh(φ/2)

sinh2(φ/2)
+

cosh(z/2)

sinh2(φ/2)
+

1

cosh(z/2)

=
1 + 2 cosh(z/2) cosh(z/2) + cosh2(z/2) + sinh2(φ/2)

sinh2(φ/2) cosh(z/2)
(A.78)

=
(cosh(φ/2) + cosh(z/2))2

sinh2(φ/2) cosh(z/2)
and (A.79)

coth(φ/2) sinh(z/2)− 2 coth(z/2) cosh2(φ/2)

sinh3(φ/2)
− cosh2(z/2) coth3(φ/2)

sinh(z/2)

− cosh(φ/2)

sinh(z/2) sinh3(φ/2)

= − cosh(φ/2)

sinh3(φ/2) sinh(z/2)

(
− sinh2(φ/2) sinh2(z/2) + 2 cosh(φ/2) cosh(z/2)

+ cosh2(z/2) cosh2(φ/2) + 1
)

(A.80)

= − cosh(φ/2)

sinh3(φ/2) sinh(z/2)

(
− (cosh2(φ/2)− 1)(cosh2(z/2)− 1) + 2 cosh(φ/2) cosh(z/2)

+ cosh2(z/2) cosh2(φ/2) + 1
)

(A.81)

= −cosh(φ/2)(cosh(φ/2) + cosh(z/2))2

sinh3(φ/2) sinh(z/2)
. (A.82)
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Hence equation A.74 says

0 = 2
(cosh(φ/2) + cosh(z/2))2

sinh2(φ/2) sinh(z/2)
□(h′)φ− (cosh(φ/2) + cosh(z/2))2

sinh2(φ/2) cosh(z/2)
∇(h′)
i (φ)∇(h′)i(z)

− cosh(φ/2)(cosh(φ/2) + cosh(z/2))2

sinh3(φ/2) sinh(z/2)
∇(h′)
i (z)∇(h′)i(z) (A.83)

⇐⇒ □(h′)φ =
1

2
tanh(z/2)∇(h′)

i (φ)∇(h′)i(z) +
1

2
coth(φ/2)∇(h′)

i (z)∇(h′)i(z), (A.84)

which completes the proof of equation A.1. Substituting this result back into equation A.72
gives

□(h′)z =
1

2

(
1

sinh(φ/2) sinh(z/2)
+ coth(φ/2) coth(z/2)

)
×
(
tanh(z/2)∇(h′)

i (φ)∇(h′)i(z) + coth(φ/2)∇(h′)
i (z)∇(h′)i(z)

)
+

1

2
∇(h′)
i (z)∇(h′)i(z)

(
tanh(z/2)− coth(z/2) coth2(φ/2)− cosh(φ/2)

sinh(z/2) sinh2(φ/2)

)
− 1

2 sinh(φ/2) cosh(z/2)
∇(h′)
i (φ)∇(h′)i(z) (A.85)

=
1

2
∇(h′)
i (φ)∇(h′)i(z)

(
1

sinh(φ/2) cosh(z/2)
+ coth(φ/2)− 1

sinh(φ/2) cosh(z/2)

)
+

1

2
∇(h′)
i (z)∇(h′)i(z)

(
cosh(φ/2)

sinh2(φ/2) sinh(z/2)
+ coth2(φ/2) coth(z/2) + tanh(z/2)

− coth(z/2) coth2(φ/2)− cosh(φ/2)

sinh(z/2) sinh2(φ/2)

)
(A.86)

=
1

2
coth(φ/2)∇(h′)

i (φ)∇(h′)i(z) +
1

2
tanh(z/2)∇(h′)

i (z)∇(h′)i(z), (A.87)

which proves equation A.2.
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Appendix B

Proof of theorem 5.14

In this appendix I’ll prove that equation 5.46,

R
(h)
ij =

1

S
∇(h)
i ∇(h)

j S +
C2

(n− 3)S2
hij∇(h)

k (ψ)∇(h)k(ψ)− (n− 2)C2

(n− 3)S2
∇(h)
i (ψ)∇(h)

j (ψ), (B.1)

is equivalent to

R
(h′)
ij =

1

2
coth(φ/2)∇(h′)

i ∇(h′)
j (φ)− 1

4(n− 3)
∇(h′)
i (φ)∇(h′)

j (φ)

+
1

4(n− 3)
h′ij∇

(h′)
k (φ)∇(h′)k(φ). (B.2)

I can assume z is a constant, because this is already proven in the main text before R
(h)
ij is ever

required in terms of h′, φ and z.
From page 42 of [16],

R
(h′)
ij = R

(h)
ij +

n− 3

4
Ω2Ωij +

1

4
Ω2hijΩ

k
k, where (B.3)

Ωij =
4

Ω
∇(h)
i ∇(h)

j

(
1

Ω

)
− 2hij∇(h)

k

(
1

Ω

)
∇(h)k

(
1

Ω

)
and Ωi

i = hijΩij. (B.4)

By equation A.45,

∇(h)
i ∇(h)

j

(
1

Ω

)
= ∇(h′)

i ∇(h′)
j

(
1

Ω

)
+∇(h′)

i

(
1

Ω

)
∇(h′)
j (ln(Ω)) +∇(h′)

j

(
1

Ω

)
∇(h′)
i (ln(Ω))

− h′ij∇
(h′)
k

(
1

Ω

)
∇(h′)k(ln(Ω)) (B.5)

= ∇(h′)
i ∇(h′)

j

(
1

Ω

)
− 1

Ω2
∇(h′)
i (Ω)∇(h′)

j (ln(Ω))− 1

Ω2
∇(h′)
j (Ω)∇(h′)

i (ln(Ω))

+ h′ij
1

Ω2
∇(h′)
k (Ω)∇(h′)k(ln(Ω)). (B.6)
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Substituting this back into the Ωij definition, I get

Ω2Ωij

= 4Ω∇(h′)
i ∇(h′)

j

(
1

Ω

)
− 4

Ω
∇(h′)
i (Ω)∇(h′)

j (ln(Ω))− 4

Ω
∇(h′)
j (Ω)∇(h′)

i (ln(Ω))

+ h′ij
4

Ω
∇(h′)
k (Ω)∇(h′)k(ln(Ω))− 2hij

1

Ω2
∇(h′)
k (Ω)∇(h′)

l (Ω)hkl (B.7)

= 4Ω∇(h′)
i ∇(h′)

j

(
1

Ω

)
− 8∇(h′)

i (ln(Ω))∇(h′)
j (ln(Ω)) + 2h′ij∇

(h′)
k (ln(Ω))∇(h′)k(ln(Ω)). (B.8)

∴ Ω2hijΩ
k
k

= Ω2hijΩklh
kl (B.9)

= Ω2h′ijΩklh
′kl (B.10)

= 4Ωh′ij□
(h′)

(
1

Ω

)
+ 2(n− 5)h′ij∇

(h′)
k (ln(Ω))∇(h′)k(ln(Ω)). (B.11)

∴
n− 3

4
Ω2Ωij +

1

4
Ω2hijΩ

k
k

= (n− 3)Ω∇(h′)
i ∇(h′)

j

(
1

Ω

)
− 2(n− 3)∇(h′)

i (ln(Ω))∇(h′)
j (ln(Ω)) + Ωh′ij□

(h′)

(
1

Ω

)
+ (n− 4)h′ij∇

(h′)
k (ln(Ω))∇(h′)k(ln(Ω)). (B.12)

Substituting this back into equations B.3 and B.1,

R
(h′)
ij =

1

S
∇(h)
i ∇(h)

j S +
C2

(n− 3)S2
hij∇(h)

k (ψ)∇(h)k(ψ)− (n− 2)C2

(n− 3)S2
∇(h)
i (ψ)∇(h)

j (ψ)

+ (n− 3)Ω∇(h′)
i ∇(h′)

j

(
1

Ω

)
− 2(n− 3)∇(h′)

i (ln(Ω))∇(h′)
j (ln(Ω)) + Ωh′ij□

(h′)

(
1

Ω

)
+ (n− 4)h′ij∇

(h′)
k (ln(Ω))∇(h′)k(ln(Ω)). (B.13)

In the last expression, using equation A.45 again,

∇(h)
i ∇(h)

j S = ∇(h′)
i ∇(h′)

j S +∇(h′)
i (S)∇(h′)

j (ln(Ω)) +∇(h′)
j (S)∇(h′)

i (ln(Ω))

− h′ij∇
(h′)
k (S)∇(h′)k(ln(Ω)). (B.14)

Meanwhile, I also have,

C2

(n− 3)S2
hij∇(h)

k (ψ)∇(h)k(ψ) =
C2

(n− 3)S2
h′ij∇

(h′)
k (ψ)∇(h′)k(ψ) and (B.15)

(n− 2)C2

(n− 3)S2
∇(h)
i (ψ)∇(h)

j (ψ) =
(n− 2)

(n− 3)S2
∇(h′)
i (Cψ)∇(h′)

j (Cψ). (B.16)

Putting all these pieces together,

R
(h′)
ij =

1

S
∇(h′)
i ∇(h′)

j S +
1

S
∇(h′)
i (S)∇(h′)

j (ln(Ω)) +
1

S
∇(h′)
j (S)∇(h′)

i (ln(Ω))

− 1

S
h′ij∇

(h′)
k (S)∇(h′)k(ln(Ω)) +

1

(n− 3)S2
h′ij∇

(h′)
k (Cψ)∇(h′)k(Cψ)

− (n− 2)

(n− 3)S2
∇(h′)
i (Cψ)∇(h′)

j (Cψ) + (n− 3)Ω∇(h′)
i ∇(h′)

j

(
1

Ω

)
− 2(n− 3)∇(h′)

i (ln(Ω))∇(h′)
j (ln(Ω)) + Ωh′ij□

(h′)

(
1

Ω

)
+ (n− 4)h′ij∇

(h′)
k (ln(Ω))∇(h′)k(ln(Ω)). (B.17)
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All that remains is the unenviable task of evaluating all these derivatives and simplifying the
result. Some of these derivatives have already been calculated in appendix A. With z constant,
equations A.15, A.16 and A.20 say

∇(h′)
i (Cψ) = − sinh(φ/2) sinh(z/2)

2(cosh(φ/2) + cosh(z/2))2
, (B.18)

∇(h′)
i (S) =

(1 + cosh(φ/2) cosh(z/2))∇(h′)
i φ

2(cosh(φ/2) + cosh(z/2))2
and (B.19)

∇(h′)
i (ln(Ω)) = − sinh(φ/2)∇(h′)

i φ

2(n− 3)(cosh(φ/2) + cosh(z/2))
. (B.20)

Putting these together with lemma 5.9,

1

S
∇(h′)
i (S)∇(h′)

j (ln(Ω)) = − 1 + cosh(φ/2) cosh(z/2)

4(n− 3)(cosh(φ/2) + cosh(z/2))2
∇(h′)
i (φ)∇(h′)

j (φ),

(B.21)

1

S2
∇(h′)
i (Cψ)∇(h′)

j (Cψ) =
sinh2(z/2)

4(cosh(φ/2) + cosh(z/2))2
∇(h′)
i (φ)∇(h′)

j (φ) and (B.22)

(n− 3)∇(h′)
i (ln(Ω))∇(h′)

j (ln(Ω)) =
sinh2(φ/2)

4(n− 3)(cosh(φ/2) + cosh(z/2))2
∇(h′)
i (φ)∇(h′)

j (φ). (B.23)

Meanwhile, the 2nd derivative terms are as follows.

1

S
∇(h′)
i ∇(h′)

j S

=
cosh(φ/2) + cosh(z/2)

sinh(φ/2)
∇(h′)
i

(
(1 + cosh(φ/2) cosh(z/2))∇(h′)

j φ

2(cosh(φ/2) + cosh(z/2))2

)
(B.24)

= −cosh(φ/2) + cosh(z/2)

sinh(φ/2)

sinh(φ/2)∇(h′)
i φ

2(cosh(φ/2) + cosh(z/2))3
(1 + cosh(φ/2) cosh(z/2))∇(h′)

j φ

+
1

4 sinh(φ/2)(cosh(φ/2) + cosh(z/2))
sinh(φ/2) cosh(z/2)∇(h′)

i (φ)∇(h′)
j (φ)

+
1

2 sinh(φ/2)(cosh(φ/2) + cosh(z/2))
(1 + cosh(φ/2) cosh(z/2))∇(h′)

i ∇(h′)
j φ (B.25)

=
cosh2(z/2)− cosh(φ/2) cosh(z/2)− 2

4(cosh(φ/2) + cosh(z/2))2
∇(h′)
i (φ)∇(h′)

j (φ)

+

1
sinh(φ/2)

+ cosh(z/2) coth(φ/2)

2(cosh(φ/2) + cosh(z/2))
∇(h′)
i ∇(h′)

j φ. (B.26)
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From equation 5.84,

(n− 3)Ω∇(h′)
i ∇(h′)

j

(
1

Ω

)
= (n− 3)

(
2 cosh(z/2)

cosh(φ/2) + cosh(z/2)

)1/(n−3)

∇(h′)
i ∇(h′)

j

((
cosh(φ/2)

2 cosh(z/2)
+

1

2

)1/(n−3)
)

(B.27)

=

(
2 cosh(z/2)

cosh(φ/2) + cosh(z/2)

)1/(n−3)

×∇(h′)
i

((
cosh(φ/2)

2 cosh(z/2)
+

1

2

)(4−n)/(n−3)
sinh(φ/2)

4 cosh(z/2)
∇(h′)
j φ

)
(B.28)

=
2 cosh(z/2)

cosh(φ/2) + cosh(z/2)

(
cosh(φ/2)

8 cosh(z/2)
∇(h′)
i (φ)∇(h′)

j (φ) +
sinh(φ/2)

4 cosh(z/2)
∇(h′)
i ∇(h′)

j (φ)

)
− n− 4

n− 3

(
2 cosh(z/2)

cosh(φ/2) + cosh(z/2)

)2
sinh(φ/2)

4 cosh(z/2)
∇(h′)
i (φ)

sinh(φ/2)

4 cosh(z/2)
∇(h′)
j (φ) (B.29)

=
cosh(φ/2)∇(h′)

i (φ)∇(h′)
j (φ) + 2 sinh(φ/2)∇(h′)

i ∇(h′)
j φ

4(cosh(φ/2) + cosh(z/2))

− (n− 4)(n− 3)∇(h′)
i (ln(Ω))∇(h′)

j (ln(Ω)). (B.30)

Corollary 5.13.1 says □(h′)φ = 0, so it follows that

Ω□(h′)

(
1

Ω

)
=

cosh(φ/2)∇(h′)
k (φ)∇(h′)k(φ)

4(n− 3)(cosh(φ/2) + cosh(z/2))
− (n− 4)∇(h′)

k (ln(Ω))∇(h′)k(ln(Ω)). (B.31)

Substituting all of these expressions back into equation B.17 gives

R
(h′)
ij =

1

S
∇(h′)
i ∇(h′)

j S +
1

S
∇(h′)
i (S)∇(h′)

j (ln(Ω)) +
1

S
∇(h′)
j (S)∇(h′)

i (ln(Ω))

− 1

S
h′ij∇

(h′)
k (S)∇(h′)k(ln(Ω)) +

1

(n− 3)S2
h′ij∇

(h′)
k (Cψ)∇(h′)k(Cψ)

− (n− 2)

(n− 3)S2
∇(h′)
i (Cψ)∇(h′)

j (Cψ)− (n− 3)(n− 2)∇(h′)
i (ln(Ω))∇(h′)

j (ln(Ω))

+
cosh(φ/2)∇(h′)

i (φ)∇(h′)
j (φ) + 2 sinh(φ/2)∇(h′)

i ∇(h′)
j φ

4(cosh(φ/2) + cosh(z/2))

+ h′ij
cosh(φ/2)∇(h′)

k (φ)∇(h′)k(φ)

4(n− 3)(cosh(φ/2) + cosh(z/2))
(B.32)

=
∇(h′)
i ∇(h′)

j (φ)

2(cosh(φ/2) + cosh(z/2))

(
1

sinh(φ/2)
+ cosh(z/2) coth(φ/2) + sinh(φ/2)

)
+

∇(h′)
i (φ)∇(h′)

j (φ)

4(n− 3)(cosh(φ/2) + cosh(z/2))2

(
(n− 3) cosh2(z/2)− (n− 3) cosh(φ/2) cosh(z/2)

− 2(n− 3)− 2(1 + cosh(φ/2) cosh(z/2))− (n− 2) sinh2(z/2)− (n− 2) sinh2(φ/2)

+ (n− 3) cosh(φ/2)(cosh(φ/2) + cosh(z/2))

)
+

h′ij∇
(h′)
k (φ)∇(h′)k(φ)

4(n− 3)(cosh(φ/2) + cosh(z/2))2

(
1 + cosh(φ/2) cosh(z/2) + sinh2(z/2)

+ cosh(φ/2)(cosh(φ/2) + cosh(z/2))

)
. (B.33)
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As usual, each of these ghastly derivative coefficients simplifies.

1

sinh(φ/2)
+ cosh(z/2) coth(φ/2) + sinh(φ/2)

= coth(φ/2)

(
1

cosh(φ/2)
+ cosh(z/2) +

sinh2(φ/2)

cosh(φ/2)

)
(B.34)

= coth(φ/2)(cosh(φ/2) + cosh(z/2)), (B.35)

(n− 3) cosh2(z/2)− (n− 3) cosh(φ/2) cosh(z/2)− 2(n− 3)

− 2(1 + cosh(φ/2) cosh(z/2))− (n− 2) sinh2(z/2)− (n− 2) sinh2(φ/2)

+ (n− 3) cosh(φ/2)(cosh(φ/2) + cosh(z/2))

= (n− 2)− cosh2(z/2)− 2(n− 3)− 2− 2 cosh(φ/2) cosh(z/2) + (n− 2)

− cosh2(φ/2) (B.36)

= −(cosh(φ/2) + cosh(z/2))2 and (B.37)

1 + cosh(φ/2) cosh(z/2) + sinh2(z/2) + cosh(φ/2)(cosh(φ/2) + cosh(z/2))

= cosh2(z/2) + 2 cosh(φ/2) cosh(z/2) + cosh2(φ/2) (B.38)

= (cosh(φ/2) + cosh(z/2))2. (B.39)

Hence, equation B.33 says

R
(h′)
ij =

1

2
coth(φ/2)∇(h′)

i ∇(h′)
j (φ)− 1

4(n− 3)
∇(h′)
i (φ)∇(h′)

j (φ)

+
1

4(n− 3)
h′ij∇

(h′)
k (φ)∇(h′)k(φ), (B.40)

which is what I set out to prove.
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Appendix C

Proof of lemma 5.25

In this appendix, I prove that in the presence of a magnetic field,

□(h′)(z) =
1

2
coth(φ/2)∇(h′)

i (φ)∇(h′)i(z) +
1

2
tanh(z/2)∇(h′)

i (z)∇(h′)i(z)

+
2C

n− 2
Ω2 sinh2(φ/2)ψh′ikh′jlFijFkl. (C.1)

Equation 5.45 is unchanged upon introducing the magnetic field.
Hence, the derivation of equation A.42 in appendix A still holds. It says

0 =
2(1 + cosh(φ/2) cosh(z/2))

sinh(φ/2)
□(h′)(z)− 2 sinh(z/2)□(h′)(φ)− tanh(z/2)

sinh(φ/2)
∇(h′)
i (z)∇(h′)i(z)

−
(

cosh(z/2)

sinh2(φ/2)
+

1

cosh(z/2)
+

cosh(φ/2)

sinh2(φ/2)

)
∇(h′)
i (φ)∇(h′)i(z). (C.2)

∴ □(h′)φ =
1 + cosh(φ/2) cosh(z/2)

sinh(φ/2) sinh(z/2)
□(h′)z − 1

2 sinh(φ/2) cosh(z/2)
∇(h′)
i (z)∇(h′)i(z)

− 1

2

(
coth(z/2)

sinh2(φ/2)
+

1

cosh(z/2) sinh(z/2)
+

cosh(φ/2)

sinh(z/2) sinh2(φ/2)

)
∇(h′)
i (φ)∇(h′)i(z).

(C.3)

Also from appendix A,

□(h)S − C2

S
∇(h)
i (ψ)∇(h)i(ψ)

=
Ω2

4(cosh(φ/2) + cosh(z/2))2

[
2□(h′)(φ)(1 + cosh(φ/2) cosh(z/2))

− 2 sinh(φ/2) sinh(z/2)□(h′)(z)− tanh(z/2)∇(h′)
i (φ)∇(h′)i(z)

+∇(h′)
i (z)∇(h′)i(z)

(
sinh(φ/2) sinh2(z/2)

cosh(z/2)
− cosh(z/2) cosh2(φ/2)

sinh(φ/2)
− coth(φ/2)

)]
. (C.4)
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Hence, equation 5.238 says1

0 = □(h)S − C2

S
∇(h)
i (ψ)∇(h)i(ψ)− S

n− 2
F ijFij (C.5)

=
Ω2

4(cosh(φ/2) + cosh(z/2))2

[
2□(h′)(φ)(1 + cosh(φ/2) cosh(z/2))

− 2 sinh(φ/2) sinh(z/2)□(h′)(z)− tanh(z/2)∇(h′)
i (φ)∇(h′)i(z)

+∇(h′)
i (z)∇(h′)i(z)

(
sinh(φ/2) sinh2(z/2)

cosh(z/2)
− cosh(z/2) cosh2(φ/2)

sinh(φ/2)
− coth(φ/2)

)]
− S

n− 2
FijF

ij (C.6)

∴ 0 = 2□(h′)(φ)(1 + cosh(φ/2) cosh(z/2))− 4 sinh(φ/2)(cosh(φ/2) + cosh(z/2))

(n− 2)Ω2
F ijFij

− 2 sinh(φ/2) sinh(z/2)□(h′)(z)− tanh(z/2)∇(h′)
i (φ)∇(h′)i(z)

+∇(h′)
i (z)∇(h′)i(z)

(
sinh(φ/2) sinh2(z/2)

cosh(z/2)
− cosh(z/2) cosh2(φ/2)

sinh(φ/2)
− coth(φ/2)

)
(C.7)

Then, by equation C.3,

0 = 2□(h′)(z)

(
1

sinh(φ/2) sinh(z/2)
+ 2 coth(φ/2) coth(z/2) +

cosh2(φ/2) cosh2(z/2)

sinh(φ/2) sinh(z/2)

− sinh(φ/2) sinh(z/2)

)
− 4 sinh(φ/2)(cosh(φ/2) + cosh(z/2))

(n− 2)Ω2
F ijFij

−∇(h′)
i (φ)∇(h′)i(z)

(
coth(z/2)

sinh2(φ/2)
+

1

cosh(z/2) sinh(z/2)
+

cosh(φ/2)

sinh(z/2) sinh2(φ/2)

+
cosh(φ/2) cosh2(z/2)

sinh(z/2) sinh2(φ/2)
+

cosh(φ/2)

sinh(z/2)
+ coth(z/2) coth2(φ/2) + tanh(z/2)

)
+∇(h′)

i (z)∇(h′)i(z)

(
− 1

sinh(φ/2) cosh(z/2)
− 2 coth(φ/2) +

sinh(φ/2) sinh2(z/2)

cosh(z/2)

− cosh(z/2) cosh2(φ/2)

sinh(φ/2)

)
. (C.8)

The coefficients of each type of derivative term simplify as follows.

1

sinh(φ/2) sinh(z/2)
+ 2 coth(φ/2) coth(z/2) +

cosh2(φ/2) cosh2(z/2)

sinh(φ/2) sinh(z/2)

− sinh(φ/2) sinh(z/2)

=
1 + 2 cosh(φ/2) cosh(z/2) + cosh2(φ/2) cosh2(z/2)− sinh2(φ/2) sinh2(z/2)

sinh(φ/2) sinh(z/2)
(C.9)

=
1

sinh(φ/2) sinh(z/2)
(1 + 2 cosh(φ/2) cosh(z/2) + cosh2(φ/2) cosh2(z/2)

− (cosh2(φ/2)− 1)(cosh2(z/2)− 1)) (C.10)

=
(cosh(φ/2) + cosh(z/2))2

sinh(φ/2) sinh(z/2)
. (C.11)

1To clarify, throughout this section, F ij will mean hikhjlFkl even though other i, j, k ... indices are often
manifestly raised using the h′ metric.
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coth(z/2)

sinh2(φ/2)
+

1

cosh(z/2) sinh(z/2)
+

cosh(φ/2)

sinh(z/2) sinh2(φ/2)
+

cosh(φ/2) cosh2(z/2)

sinh(z/2) sinh2(φ/2)
+

cosh(φ/2)

sinh(z/2)

+ coth(z/2) coth2(φ/2) + tanh(z/2)

=
cosh(φ/2)

sinh(z/2) sinh2(φ/2)

(
cosh(z/2)

cosh(φ/2)
+

sinh2(φ/2)

cosh(φ/2) cosh(z/2)
+ 1 + cosh2(z/2) + sinh2(φ/2)

+ cosh(φ/2) cosh(z/2) +
sinh2(z/2) sinh2(φ/2)

cosh(z/2) cosh(φ/2)

)
(C.12)

=
cosh(φ/2)

sinh(z/2) sinh2(φ/2)

(
cosh(z/2)

cosh(φ/2)
+

cosh2(φ/2)− 1

cosh(φ/2) cosh(z/2)
+ cosh2(φ/2) + cosh2(z/2)

+ cosh(φ/2) cosh(z/2) +
(cosh2(z/2)− 1)(cosh2(φ/2)− 1)

cosh(z/2) cosh(φ/2)

)
(C.13)

=
cosh(φ/2)

sinh(z/2) sinh2(φ/2)

(
cosh(z/2)

cosh(φ/2)
+

cosh(z/2)(cosh2(φ/2)− 1)

cosh(φ/2)
+ cosh2(φ/2) + cosh2(z/2)

+ cosh(φ/2) cosh(z/2)

)
(C.14)

=
cosh(φ/2)(cosh(φ/2) + cosh(z/2))2

sinh(z/2) sinh2(φ/2)
. (C.15)

− 1

sinh(φ/2) cosh(z/2)
− 2 coth(φ/2) +

sinh(φ/2) sinh2(z/2)

cosh(z/2)
− cosh(z/2) cosh2(φ/2)

sinh(φ/2)

=
−1− 2 cosh(φ/2) cosh(z/2) + sinh2(φ/2) sinh2(z/2)− cosh2(z/2) cosh2(φ/2)

sinh(φ/2) cosh(z/2)
(C.16)

= −(cosh(φ/2) + cosh(z/2))2

sinh(φ/2) cosh(z/2)
. (C.17)

Substituting these results back up, I get

0 = 2□(h′)(z)
(cosh(φ/2) + cosh(z/2))2

sinh(φ/2) sinh(z/2)
− 4 sinh(φ/2)(cosh(φ/2) + cosh(z/2))

(n− 2)Ω2
F ijFij

−∇(h′)
i (φ)∇(h′)i(z)

cosh(φ/2)(cosh(φ/2) + cosh(z/2))2

sinh(z/2) sinh2(φ/2)

−∇(h′)
i (z)∇(h′)i(z)

(cosh(φ/2) + cosh(z/2))2

sinh(φ/2) cosh(z/2)
. (C.18)

∴ □(h′)(z) =
2 sinh(z/2) sinh2(φ/2)

(n− 2)Ω2(cosh(φ/2) + cosh(z/2))
F ijFij +

1

2
coth(φ/2)∇(h′)

i (φ)∇(h′)i(z)

+
1

2
tanh(z/2)∇(h′)

i (z)∇(h′)i(z) (C.19)

=
2Cψ sinh2(φ/2)Ω2

(n− 2)
h′ikh′jlFijFkl +

1

2
coth(φ/2)∇(h′)

i (φ)∇(h′)i(z)

+
1

2
tanh(z/2)∇(h′)

i (z)∇(h′)i(z). (C.20)
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Appendix D

Notational conventions

The following symbols typically have the meanings given below.

• M : the spacetime manifold

• n: the dimension of M

• g: the Lorentzian metric on the full spacetime

• ka: static Killing vector field

• t: a coordinate in a coordinate system where ka = ∂
∂t

• Σt: a surface of constant t

• h: the metric on a spacelike hypersurface within the full spacetime, typically Σt

• h̃ or β: the induced metric on an (n− 2)-dimensional spacelike submanifold

• H or H+: the event horizon

• κ: the surface gravity of the event horizon

• H: a spacelike cross-section - typically a constant t slice - of the event horizon

• C: the domain of outer communication or the constant,
√

2(n−3)
n−2

, based on context

• ∇: the covariant derivative associated with g

• ∇(a): the covariant derivative association with some given metric, a

• ε: the Levi-Civita tensor corresponding to g

• ε(a): the Levi-Civita tensor corresponding to some given metric, a

• ∴: a symbol to denote “therefore”

• I±: future and past null infinity

• Sn−2
∞ : the surface at infinity on an (n− 1)-dimensional asymptotically flat end

• ωn−2: the area of a unit radius Sn−2
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The metric signature of g will always be mostly pluses1.

n is always assumed to be at least 4.

a, b, ... will be abstract indices for tensors on M . They will be raised/lowered by gab/gab.

µ, ν, ... will run from 0 to n− 1 and be indices for tensors on M in a specific basis. They will
be raised/lowered by gµν/gµν .

i, j, ... will run 1 to n− 1 and be indices for tensors on some spacelike hypersurface, typically
Σt. They will typically be raised/lowered by hij/hij or a conformally equivalent metric.

A, B, ... will run 2 to n− 1 and be indices for tensors on some spacelike (n− 2)-dimensional
surface. They will typically be raised/lowered by h̃AB/h̃AB.

The standard bilinear form on p-forms, α and β, is (α|β) = 1
p!
αa1···apβ

a1···ap .

The Hodge dual of a p-form, α, is defined to be (⋆α)a1···an−p =
1
p!
εb1···bpa1···an−pα

b1···bp .

The Riemann tensor is defined so that [∇a,∇b]V
c = Rc

dabV
d.

Newton’s constant, G, and the speed of light, c, are both set to 1.

A series of derivatives acts on all terms enclosed in brackets, e.g. ∇a1 · · · ∇an(AB) means
there are n derivatives, ∇a1 , ..., ∇an , acting on the product, AB, with ∇an acting first and ∇a1

acting last. I’ve tried to never write an expression such as ∇aA∇aB, which in principle could
mean ∇a(A)∇a(B) or ∇a(A∇aB).

1This is the only sensible convention.
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